PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

* INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/37048
HO04) 3/24, HO4L 9/18, 12/56, HO4K Al . L
1/00, HO4N 7/10, M2, /52 (43) Internationa! Publication Date: 22 July 1999 (22.07.99) .

(21) International Application Number: PCT/US99/00360

| (22) International Filing Date: 7 January 1999 (07.01.99)
(30) Priority Data:
09/007,211 14 January 1998 (14.01.98) uUs
09/007,212 14 January 1998 (14.01.98) uUs
09/007,334 14 January 1998 (14.01.98) us
09/007,203 14 January 1998 (14.01.98) uUs
09/007,204 14 January 1998 (14.01.98) Us
09/007,210 14 January 1998 (14.01.98) us
09/006,963 14 January 1998 (14.01.98) Us
09/006,564 14 January 1998 (14.01.98) Us
09/007,198 14 January 1998 (14.01.98) us
09/007,199 14 January 1998 (14.01.98) Us

(71) Applicant: SKYSTREAM CORPORATION [US/US]; Suite B,
555 Clyde Avenue, Mountain View, CA 94043-2211 (US).

(72) Inventors: GRATACAP, Regis; 41 Ethyl Avenue, Mill Valley,
CA 94941 (US). SLATTERY, William; 314 Almendra
Avenue, Los Gatos, CA 95030 (US). ROBINETT, Robert;
485 Cotton Street, Menlo Park, CA 94025 (US).

(74) Agents: GUTTMAN, Charles et al,; Proskauver Rose LLP,
Patent Dept., 1585 Broadway, New York, NY 10036-8299
(US).

Z
>
z
e
Z
N
w
c
P
oc
!
=)
o
o
7%

TM. TR, TT. UA, UG, UZ, VN, YU, ZW, ARIPO patent
G s

(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT,

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: VIDEO PROGRAM BEARING TRANSPORT STREAM REMULTIPLEXER

KR T2, Y., R ESL. CRP.. 1DE

(57) Abstract

A method and system (30, 30°, 100, 100°, 100°*, 100"} remultiplex video program bearing data (TS1-TSS, TS10-TS20), using a
descriptor based system (122, 124, 129~4) for timely outputting transport packets, using a descriptor and transport packet caching technique
(116, 122, 124, 114) for decoupling the synchronous receipt and transmission of transport packets from any asynchronous processing (160,
120, 130, 2, 402, S4, 404), using descriptors for managing scrambling and descrambling control words (129-9), optimizing bandwidth of
transport streams by replacing null transport packets with transport packet data, and using a technique (180) for locking multiple internal

reference clock generators (113).

~.

AOD FGVTIVAY 1534

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Amenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazi!

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d'lvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB

ERERRE B3R

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav

Republic of Macedonia

Mali
Mongolia
Mauritania
Matawi
Mexico
Niger
Netherlands
Norway

New Zealand
Poland
Portugal
Romania
Russian Federation
Sudan
Sweden

Singapore

SI
SK
SN

Slovenia

Slovakia

Sencgal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine’

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

WO 99/37048 - PCT/US99/00360

VIDEO PROGRAM BEARING
TRANSPORT STREAM REMULTIPLEXER

Field of the Invention

The present invention pertains to communication systems. In particular, the
invention pertains to selectively multiplexing bit streams containing one or more programs,
such as real-time audio-video programs. Program specific and oiher program related
information is adjusted so as to enable identification, extraction and rgal-time reproduction

of the program at the receiving end of the bit streams.

Background of the Invention

Recently, techniques have been proposed for efficiently compressing digital audio-
video programs for storage and transmission. See, for example, ISOMECIS 13818-1,2,3:
Information Technology-Generic Coding of Moving Pictures and Associated Audio
Information: Systems, Video and Audio (“MPEG-2"); ISOMEC IS 11172-1,2,3:
Information Technology-Generic Coding of Moving Pictures and Associated Audio for
Digital Storage Media at up to about 1.5 Mbits/sec: Systems, Video and Audio (“MPEG-
1"); Dolby AC-3; Motion JPEG, etc. Herein, the term program means a colleétion of
related audio-video signals having a common time base and intended for synchronized
presentation, as per MPEG-2 parlance.

MPEG-1 and MPEG-2 provide for hierarchically layered streams. That is, an audio-
video program is composed of one or more coded bit streams or “clementary streams”

(“ES”) such as an encoded video ES, and encoded audio ES, a second language encoded

10

15

20

WO 99/37048 PCT/US99/00360

audio ES, a closed caption text ES, etc. Each ES, in particular, each of the audio and video
ESs, is separately encoded. The encoded ESs are then combined into a systems layer
stream such as a program stream “PS” or a transport stream “TS”. The purpose of the PS
or TS is to enable extraction of the encoded ESs of a program, separation and separate
decoding of each ES and synchronized presentation of the decoded ESs. The TS or PS may
be encapsulated in an even higher channel layer or storage format which provides for

forward error correction.

Elementary Streams

Audio ESs are typically encoded at a constant bit rate, e.g., 384 kbps. Video ESs,
on the other hand, are encoded according to MPEG-1 or MPEG-2 at a variable bit rate.
This means that the number of bits per compressed/encoded picture varies from picture to
picture (which pictures are presented or displayed at a constant rate). Video encoding
involves the steps of spatially and temporally encoding the video pictures. Spatial encoding
includes discrete cosine transforming, quantizing, (zig-zag) scanning, run length encoding
and variable length encoding blocks of luminance and chrominance pixel data. Temporal
coding involves estimating the motion of macroblocks (e.g., a 4x4 array of luminance
blocks and each chrominance block overlaid thereon) to identify motion vectors, motion
compensating the macroblo.cks to form prediction error macroblocks, spatially encoding
the prediction error macroblocks and variable length encoding the motion vectors. Some
pictures, called I pictures, are only spatially encoded, whereas other pictures, such as P and
B pictures are both spatially and motion compensated encoded (i.., temporally predicted

from other pictures). Encoded I pictures typically have more bits than encoded P pictures

10

15

20

WO 99/37048 PCT/US99/00360

and encoded P pictures typically have more bits than encoded B pictures. In any event,
even encoded pictures of the same type tend to have different numbers of bits.

MPEG-2 defines a buffer size constraint on encoded video ESs. In particular, a
deéoder is presumed to have a buffer with a predefined maximum storage capacity. The
encoded video ES must not cause the decoder buffer to overflow (and in some cases, must
not cause the decoder buffer to underflow). MPEG-2 specifically defines the times at
which each picture’s compressed data are removed from the decoder buffer in relation to
the bit rate of the video ES, the picture display rate and certain picture reordering
constraints imposed to enable decoding of predicted pictures (from the reference pictures
from which they were predicted). Given such constraints, the number of bits produced in
compressing a picture can be adjusted (as frequently as on a macroblock by macroblock
basis) to ensure that the video ES does not cause the video ES decoder buffer to underflow

or overflow.

Transport Streams
This invention is illustrated herein for TSs. For sake of brevity, the discussion of
PSs is omitted. However, those having ordinary skill in the art will appreciate the
applicability of certain aspects of this invention to PSs.
The data of each ES is formed into variable length program elementary stream or
“PES” packets. PES packets contain data for only a single ES, but may contain data for
more than one decoding unit (e.g., may contain more than one compressed picture, more
than one com.pressed audio frame, etc.). In the case of a TS, the PES packets are first

divided into a number of payload units and inserted into fixed length (188 byte long)

10

15

20

WO 99/37048 PCT/US99/00360

transport packets. Each transport packet may carry payload data of only one type, e.g., PES
packet data for only one ES. Each TS is provided with a four byte header that includes a
packet identifier or “PID.” The PID is analogous to a tag which uniquely indicates the
contents of the transport packet. Thus, one PID is assigned to .a video ES of a particular
program, a second, different PID is assigned to the audio ES of a particular program, etc.

The ESs of each program are encoded in relation to a single encoder system time
clock. Likewise, the decoding and synchronized presentation of the ESs are, in tum,
synchronized in relation to the same encoder system time clock. Thus, the decoder must
be able to recover the original encoder system time clock in order to be able to decode each
ES and present each decoded ES in a timely and mutually synchronized fashion. To that
end, time stamps of the system time clock, called program clock references or “PCRs,” are
inserted into the payloads of selected transport packets (specifically, in adaption fields).
The decoder extracts the PCRs from the transport packets and uses the PCRs to recover the
encoder system time clock. The PES packets may contain decoding time stamps or “DTSs”
and/or presentation time stamps or “PTSs". A DTS indicates the time, relative to the
recovered encoder system time clock, at which the next decoding unit (i.e., compressed
audio frame, compressed video picture, etc.) should be decoded. The PTS indicates the
time, relative to the recovered encoder system time clock, at which the next presentation
unit (i.e., decompressed audio frame, decompressed picture, etc.) should be presented or
displayed.

Unlike the PS, a TS may have transport packets that carry program data for more
than one program. Each program may have been encoded at a different encoder in relation

to a different encoder system time clock. The TS enables the decoder to recover the

10

15

20

WO 99/37048 . PCT/US99/00360

specific system time clock of the program which the decoder desires to decode. To that
end, the TS must carry separate sets of PCRs, i.c., one set of PCRs for recovering the
encoder system time clock of each program.

The TS also carries program specific information or (PS]) in transport packets. PSI
is for identifying data of a desired program or other information for assisting in decoding
a program. A proéram association table or “PAT" is provided which is carried in transport
packets with the PID 0x0000. The PAT correlates each program number with the PID of
the transport packets carrying program definitions for that program. A program definition:
(1) indicates which ESs make up the program to which the program definition corresponds,
(2) identifies the PIDs for each of those ESs, (3) indicates the PID of the transport packets
carrying the PCRs of that program (4) identifies the PIDs of transport packets carrying ES
specific entitlement control messages (e.g., descrambling or decryption keys) and other
information. Collectively, all program definitions of a TS are referred to as a program
mapping table (PMT). Thus, a decoder can extract the PAT data from the transport packets
and use the PAT to identify the PID of the transport packets carrying the program definition
of a desired program. The decoder can then extract from the transport packets the program
definition data of the desired program and identify the PIDs of the transport packets
carrying the ES data that makes up the desired program and of the transport packets

carrying the PCRs. Using these identified PIDs, the decoder can then extract from the

“transport packets of the TSs the ES data of the ESs of the desired program and the PCRs

of that program. The decoder recovers the encoder system time clock from the PCRs of the
desired program and decodes and presents the ES data at times relative to the recovered

encoder system time clock.

10

15

20

WO 99/37048 PCT/US99/00360

Other types of information optionally provided in a TS include entitlement control
messages (ECMs), entitlement management messages (EMMs), a conditional access table
(CAT) and a network information table (NIT) (the CAT and NIT also being types of PSI).
ECMs are ES specific messages for controlling the ability of a decoder to interpret the ES
to which the ECM pertains. For example, an ES may be scrambled and the descrambling
key or control word may be an ECM. The ECMs associated with a particular ES are placed
in their own transport packets and are labeled with a unique PID. EMMs, on the other
hand, are system wide messages for controlling the ability of a set of decoders (which set

is in a system referred to as a "conditional access system") to interpret portions of a TS.

EMMs are placed in their own transport packets and are labeled with a PID unique to the - .

conditional accesses system to which the EMMs pertain. A CAT is provided whenever
EMMs are present for enabling a decoder to locate the EMMs of the conditional access
system of which the decoder is a part (i.e., of the set of decoders of which the decoder is
a member). The NIT maintains various network parameters. For example, if multiple TSs
are modulated on different carrier frcquenciés to which a decoder receiver can tune, the NIT
may indicate on which carrier frequency (the TS carrying) each program 1s modulated.

Like the video ES, MPEG-2 requires that the TS be decoded by a decoder havipg
TS buffers of predefined sizes for storing program ES and PSI data. MPEG-2 also defines
the rate at which data flows into and out of such buffers. Most importantly, MPEG-2
requires that the TS not overflow or underflow the TS buffers.

To further prevent buffer overflow or underflow, MPEG-2 requires that data
transported from an encoder to a decoder experience a constant end-to-end delay, and that

the appropriate program and ES bit rate be maintained. In addition, to ensure that ESs are

10

15

20

WO 99/37048 PCT/US99/00360

timely decoded and presented, the relative time of arrival of the PCRs in the TS should not
vary too much from the relative time indicated by such PCRs. Stated another way, each
PCR indicates the time that the system time clock (recovered at the decoder) should have
when the last byte containing a portion of the PCR is received. Thus, the time of receipt

of successive PCRs should correlate with the times indicated by each PCR.

Remultiplexing

Often it is desired to “remultiplex” TSs. Remultiplexing involves the selective
modification of the content of a TS, such as adding transport packets to a TS, deleting
transport packets from a TS, rearranging the ordering of transport packets in a TS and/or
modifying the data contained in transport packets. For example, sometimes it is desirable
to add transport packets containing a first program to a TS that contains other programs.
Such an operation involves more steps than simply adding the transport packets of the first
program. In the very least, the PSI, such as, the PAT and PMT, must be modified so that
it correctly references the contenté of the TS. However, the TS must be further modified
to maintain the constant end-to-end delay of each program carried therein. Specifically, the
bit rate of each program must not change to prevent TS and video decoder buffer underflow
and overflow. Furthermore, any temporal misalignment introduced into the PCRs of the
TS, for example, as a result of changing the relative spacing/rate of receipt of successive
transport packets bearing PCRs of the same program, must be removed.

The prior art has proposed a remultiplexer for MPEG-2 TSs. The proposed
remultiplexer is a sophisticated, dedicated piece of hardware that provides complete

synchronicity between the point that each inputted to-be-remultiplexed TS is received to

10

15

20

WO 99/37048 PCT/US99/00360

the point that the final remultiplexed outputted TS is outputted--a single system time clock
controls and synchronizes receipt, buffering, modification, tr:;hsfer, reassembly and output
of transport packets. While such a remultiplexer is capable of remultiplexing TSs, the
remultiplexer architecture is complicated and requires a dedicated, uniformly synchronous
platform.

It is an object of the present invention to provide a flexible remultiplexing
architecture that can, for instance, reside on an arbitrary, possibly asynchronous, platform.

A program encoder is known which compresses the video and audio of a single
program and produces a single program bearing TS. As noted above, MPEG-2 imposes
very tight constraints on the bit rate of the TS and the number of bits that may be present
in the video decoder buffer at any moment of time. It is difficult to encode an ES, in
particular a video ES, and ensure that the bit rate remain completely constant from moment
to moment. Rather, some overhead bandwidth must be allocated to each program to ensure
that ES data is not omitted as a result of the ES encoder producing an unexpected excessive
amount of encoded information. On the other hand, the program encoder occasionally does
not have any encoded program data to output at a particular transport packet time slot. This
may occur because the program encoder has reduced the number of bits to be outputted at
that moment to prevent a decoder buffer overflow. Alternatively, this may occur because
the program encoder needs an unanticipated longer amount of time to encode the ESs and
therefore has no data available at that instant of time. To maintain the bit rate of the TS and
prevent a TS decoder buffer underflow, a null transport packet is inserted into the transport

packet time slot.

10

15

20

WO 99/37048 PCT/US99/00360

Tﬁe presence of null transport packets in a to-be-remultiplexed TS is often a
constraint that simply must be accepted. It is an object of the present invention to optimize
the bandwidth of TSs containing null transport packets.

Sometimes, the TS or ES data is transferred via an asynchronous communication
link. Itis an object of the present invention to “re-time” such un-timed or asynchronously
transferred data. It is also an object of the present invention to minimize jitter in transport
packets transmitted from such asynchronous communication links by timing the
transmission of such transport packets.

It is also an object of the present invention to enable the user to dynamically change
the content remultiplexed into the remultiplexed TS, i.e., in real-time without stopping the
flow of transport packets in the outputted remultiplexed TS.

It is a further object of the present invention to distribute the remultiplexing
functions over a network. For example, it is an object to place one or more TS or ES
sources at arbitrary nodes of an communications network which may be asynchronous

(such as an Ethernet LAN) and to place a remultiplexer at another node of such a network.

Summary of the Invention

These and other objects are achieved according to the present invention. An
illustrative application of the invention is the remultiplexing one or more MPEG-2
compliant transport streams (TSs). TSs are bit streams that contain the data of one or more
compressed/encoded audio-video programs. Each TS is formed as a sequence of fixed
length transport packets. Each compressed program includes data for one or more

compressed elementary streams (ESs), such as a digital video signal and/or a digital audio

10

15

20

WO 99/37048 PCT/US99/00360

signal. The transport packets also carry program clock references (PCRs) for each program,
which are time stamps of an encoder system time clock to which the decoding and
presentation of the respective program is synchronized. Each program has a predetermined
bit rate and is intended to be decoded at a decoder having a TS buffer and a video decoder
buffer of predetermined sizes. Each program is encoded in a fashion so as to prevent
overflow and underflow of these buffers. Program specific information (PSI) illustratively
is also carried in selected transport packets of the TS for assisting in decoding the TS.

According to one embodiment, a remultiplexer ﬁode is provided with one or more
adaptors, each adaptor including a cache, a data link control circuit connected to the cache
and a direct memory access circuit connected to the cache. The adaptor is a synchronous
interface with special features. The data link control circuit has an input port for receiving
transport streams and an output p.on for transmitting transport streams. The direct memory
access circuit can be connected to an asynchronous communication link with a varying end-
to-end communication delay, such as a bus of the remultiplexer node. Using the
asynchronous communication link, the direct memory access circuit can access a memory
of the remultiplexer node. - The memory can store one or more queues of descriptor storage
locations, such as a queue assigned to an input port and a queue assigned to an output port.
The memory can also store transport packets in transport packet storage locations to which
descriptors stored in such descriptor storage locations of each queue point. Illustratively,
the remultiplexer node includes a processor, connected to the bus, for processing transport
packets and descriptors.

When an adaptor is used to input transport streams, the data link control circuit

allocates to each received transport packet to be retained, an unused descriptor in one of a

10

10

15

20

WO 99/37048 PCT/US99/00360

sequence of descriptor storage locations, of a queue allocated to the input port. The
allocated descriptor is in a descriptor storage location of which the cache has obtained
control. The data link control circuit stores each retained transport packet at a transport
packet storage location of which the cache has obtained control and which is pointed to by
the descriptor allocated thereto. The direct memory access circuit obtains control of one
or ;rhore unused descriptor storage locations of the queue in the memory following a last
descriptor storage location of which the cache has already obtained control. The direct
memory access circuit also obtains control of transport packet locations in the memory to
which such descriptors in the one or more descriptor storage locations point.

When an adaptor is used to output transport packets, the data link control circuit
retrieves from the cache each descriptor of a sequence of descriptor storage locations of a
queue assigned to the output port. The descriptors are retrieved from the beginning of the
sequence in order. The data link control circuit also retrieves from the cache the transport
packets stored in transport packet storage locations to which the retrieved descriptors point.
The data link control circuit outputs each retrieved transport packet in a unique time slot
(i.e., one transport packet per time slot) of a transport stream outputted from the output port.
The direct memory access circuit obtains from the memory for storage in the cache,
descriptors of the queue assigned to the output port in storage locations following the
descriptor storage locations in which a last cached descriptor of the sequence is stored. The
direct memory access circuit also obtains each transport packet stored in a transport packet
location to which the obtained descriptors point.

According to another embodiment, each descriptor is (also) used to record a receipt

time stamp, indicating when a transport packet is received at an input port, or a dispatch

11

10

15

20

WO 99/37048 PCT/US99/00360

time stamp, indicating the time at which a transport packet is to be transmitted from an
output port. In the case of transport packets received at an input port, the data link control
circuit records a receipt time stamp in the descriptor allocated to each received and retained
trans;.mrt packet indicating a time at which the transport packet was received. The
descriptors are maintained in order of receipt in the receipt queue. In the case of outputting
transport packets from an output port, the data link control circuit sequentially retrieves
each descriptor from the transmit queue, and the transport packet to which each retrieved
descriptor points. At a time corresponding to a dispatch time recorded in each retrieved
descriptor, the data link control circuit transmits the retrieved transport packet to which
each retrieved descriptor points in a time slot of the outputted transport stream
corresponding to the dispatch time recorded in the retrieved descriptor.

Illustratively, the remultiplexer node processor examines each descriptor in the
receipt queue, as well as other queues containing descriptors pointing to to-be-outputted
transport packets. The processor allocates a descriptor of the transmit queue associated
with an output port from which a transport packet pointed to by each examined descriptor
is to be transmitted (if any). The processor assigns a dispatch time to the allocated
descriptor of the transmit queue, depending on, for example, a receipt time of the transport
packet to which the descriptor points and an internal buffer delay betweer; receipt and
output of the transport packet. The processor furthermore orders the descriptors of the
transmit queue in order of increasing dispatch time.

A unique PCR normalization process is aiso provided. The processor schedules
each transport packet to be outputted in a time slot at a particular dispatch time,

corresponding to a predetermined delay in the remultiplexer node. If the scheduled

12

10

15

20

WO 99/37048 PCT/US99/00360

transport packet contains a PCR, the PCR is adjusted based on a drift of the local reference
clock(s) relative to the program of the system time clock from which the PCR was
ge%xerated, if any drift exists. The data link control circuit, that transmits such adjusted PCR
bearing transport packets, further adjust each adjusted PCR time stamp based on a
difference between the scheduled dispatch time of the transport packet and an actual time
at which the time slot occurs relative to an external clock.

Illustratively, if more than one transport packet is to be outputted in the same time
slot, each such transport packet is outputted in a separate consecutive time slot. The
processor calculates an estimated adjustment for each PCR in a transport packet scheduled
to be outputted in a time slot other than the time slot as would be determined using the
predetermined delay. The estimated adjustment is based on a difference in output time
between the time slot in which the processor has actually scheduled the transport packet
bearing the PCR to be outputted and the time slot as determined by the predetermined
delay. The processor adjusts the PCRs according to this estimated adjustment.

According to one embodiment, the descriptors are also used for controlling
scrambling or descrambling of transport packets. In the case of descrambling, the processor
defines a sequence of one or more processing steps to be performed on each transport
packet and orders descrambling processing within the sequence. The processor stores
control word information associated with contents of the transport packet in the control
word information storage location of the allocated descriptors. The data link control circuit
allocates descriptors to each received, retained transport packet, which descriptors each
include one or more processing indications and a storage location for control word

information. The data link control circuit sets one or more of the processing indications of

13

10

15

20

WO 99/37048 PCT/US99/00360

the allocated descriptor to indicate that the next step of processing of the sequence may be
performed on each of the allocated descriptors. A descrambler is provided for sequentially
accessing each allocated descriptor. If the processing indications of the accessed descriptor
are set to indicate that descrambling processing may be performed on the accessed
descriptor (and transport packet to which the accessed descriptor points), then the
descrambler processes the descriptor and transport packet to which it points. Specifically,
if the descriptor points to a to-be-descrambled transport packet, the descrambler
descrambles the transport packet using the control word information in the accessed
descriptor.

The descrambler may be located on the (receipt) adaptor, in which case the
descrambler processing occurs after processing by the data link control circuit (e.g.,
descriptor allocation, receipt time recording, etc.) but before processing by the direct
memory access circuit (e.g., transfer to the memory). Alternatively, the descrambler may
be a separate device connected to the asynchronous communication interface, in which case
descrambler processing occurs after processing by the direct memory access circuit but
before processing by the processor (e.g., estimated departure time calculation, PID
remapping, etc.). In either case, the control word information is a base address of a PID
index-able control word table maintained by the processor.

In the case of scrambling, the processor defines a sequence of one or more
processing steps to be performed on each transport packet and orders scrambling processing
within the sequence. The processor allocates a transmit descriptor of a transmit queue to
each to-be-transmitted transport packet and stores control word information associated with

contents of the transport packet in the control word information storage location of selected

14

10

15

20

WO 99/37048 PCT/US99/00360

ones of the allocated descriptors. The processor then sets one or more processing
indications of the descriptor to indicate that the next step of processing of the sequence may
be performed on each of the allocated descriptors. A scrambler is provided for sequentially
accessing each allocated descriptor. The scrambler processes each accessed descriptor and
transport packet to which the accessed descriptor points, but only if the processing
indications of the accessed descriptors are set to indicate that scrambling processing may
be ﬁerfonﬁed on the accessed descriptor (and transport packet to which the accessed
descriptor points). Specifically, if the accessed descriptor points to a to-be-scrambled
transport packet, the scrambler scrambles the transport packet pointed to by the accessed
descriptor using the control word information in the accessed descriptor.

The scrgmbler may be located on the (transmit) adaptor, in which case the scrambler
processing occurs afier processing by the direct memory access circuit (e.g., transfer from
the memory to the cache, etc.) but before processing by the data link control circuit (e.g.,
output at the correct time slot, final PCR correction, etc.). Alternatively, the scrambler may
bea séparate device connected to the asynchronous communication interface, in which case
descrambler processing occurs after processing by the processor (e.g., transmit queue
descriptor allocation, dispatch time assignment, PCR correction, etc.) but before processing
by the direct memory access circuit. The control word information may be a base address
of a PID index-able control word table maintained by the processor, as with descrambling.
Preferably, however, the control word information is the control word itself, used to
scramble the transport packet.

In addition, according to an embodiment, a method is provided for re-timing video

program bearing data received via an asynchronous communication link. An asynchronous

15

10

15

20

WO 99/37048 PCT/US99/00360

interface (e.g., an Ethernet interface, ATM interface, etc.) is connected to the remultiplexer
node processor (e.g., via a bus) for receiving a video program bearing bit stream from a
communication link having a varying end-to-end transmission delay. The processor
determines a time at which each of one or more received packets carrying data of the same
program of the received bit stream should appear in an outputted TS based on a plurality
of time stamps of the program carried in the received bit stream. A synchronous interface,
such as a transmit adaptor, selectively transmits selected transport packets carrying received
data in an outputted TS with a constant end-to-end delay at times that depend on the
determined times.

Ilustratively, the remultiplexer node memory stores packets containing data
received from the received bit stream in a receipt queue. The processor identifies each
packet containing data of a program stored in the receipt queue between first and second
particular packets containing consecutive time stamps of that program. The processor
determines a (transport) packet rate of the program based on a difference between the first
and second time stamps. The processor assigns as a transmit time to each of the identified
packets, the sum of a transmit time assigned to the first particular packet and a product of
the (transport) packet rate and an offset of the identified packet from the first packet.

According to yet another embodiment, a method is provided for dynamically and
seamlessly varying remultiplexing according to a changed user specification. An interface,
such as a first adaptor, selectively extracts only particular ones of the transport packets from
a TS according to an initial user specification for remultiplexed TS content. A second
interface, such as a second adaptor, reassembles selected ones of the extracted transport

packets, and, transport packets containing PSI, if any, into an outputted remultiplexed TS,

16

10

15

20

WO 99/37048 PCT/US99/00360

according to the initial user specification for remultiplexed TS content. The second adaptor
furthermore outputs the reassembled remultiplexed TS as a continuous bitstream. The
processor dynamically receives one or more new user specifications for remultiplexed TS
content which specifies one or more of: (I) different trafxsport packets to be extracted and/or
(II) different transport packets to be reassembled, while the first and second adaptors extract
transport packets and reassemble and output the remultiplexed TS. In response, the
processor causes the first and second adaptors to dynamically cease to extract or reassemble
transport packets according to the initial user specification and to dynamically begin to
extract or reassemble transport packets according to the new user specification without
introducing a discontinuity in the outputted remultiplexed transport stream. For example,
the processor may generate substitute PSI that references different transport packets as per
the new user specification, for reassembly by the second adaptor. |

Illustratively, this seamless remultiplexing variation technique can be used to
automatically ensure that the correct ES information of each selected program is always
outputted in the remultiplexed outputted TS, despite any changes in the ES make up of that
program. A controller may be provided for generating a user specification indicating one
or more programs of the inputted TSs to be outputted in the output TS. The first adaptor
continuously captures program definitions of an inputted TS. The processor continuously
determines from the captured program definitions which elementary streams make up each
program. The second adaptor outputs in the outputted TS each transport packet containing
ES data of each ES determined to make up each program indicated to be outputted by the

user specification without introducing a discontinuity into the outputted TS. Thus, even if

17

10

15

20

WO 99/37048 PCT/US99/00360

the PIDs of the ESs that make up each program change (in number or value) the correct and
complete ES data for each program is nevertheless always outputted in the outputted TS.

o According to yet another embodiment, a method is provided for optimizing the
bandwidth of a TS which has null transport packets inserted therein. The first interface
(adaptor) receives a TS at a predetermined bit rate, which TS includes variably compressed
program data bearing transport packets and one or more null transport packets. Each of the
null transport packets is inserted into a time slot of the received TS to maintain the
predetermined bit rate of the TS when none of the compressed program data bearing
transport packets are available for insertion into the received TS at the respective transport
packet time slot. The processor selectively replaces one or more of the null transport
packets with another to-be-remultiplexed data bearing transport packet. Such replacement
data bearing transport packets may contain PSI data or even bursty transactional data,
which bursty transactional data has no bit rate or transmission latency requirement for
presenting information in a continuous fashion.

Illustratively, the processor extracts selected ones of the transport packets of the
received TS and discards each non-selected transport packet including each null transport
packet. The selected transport packets are stored in the memory by the processor and first
adaptor. As described above, the processor schedules each of the stored transport packets
for output in an outputted transport stream at a time that depends on a time at which each
of the stored transport packets are received. A second interface (adaptor) outputs each of
the stored transport packets in a time slot that corresponds to the schedule. If no transport -

packet is scheduled for output at one of the time slots of the outputted TS, the second

18

10

15

20

WO 99/37048 PCT/US99/00360

adaptor outputs a null transport packet. Nevertheless, null transport packets occupy less
bandwidth in the outputted TS than in each inputted TS.

According to an additional embodiment, a method is provided for timely outputting
compressed program data bearing bit streams on an asynchronous communication link. A
synchronous interface (adaptor) provides a bit stream containing transport packets. The
processor assigns dispatch times to each of one or more selected ones of the transport
packets to maintain a predetermined bit rate of a program for which each selected transport
packet carries data and to incur an average latency for each selected transport packet. At
times that depend on each of the dispatch times, the asynchronous communication interface
receives one or more commands and responds thereto by transmitting the corresponding
se]ected transport packets at approximately the dispatch tjmes so0 as to minimize a jitter of
selected transport packets.

Tllustratively, the commands are generated as follows. The processor enqueues
transmit descriptors containing the above dispatch times, into a transmit queue. The
processor assigns an adaptor of the remultiplexer node to servicing the transmit queue on
behalf of the asynchronous interface. The data link control circuit of the assigned adaptor
causes each command to issue when the dispatch times of the descriptors equal the time of
the reference clock at the adaptor.

Various ones of these techniques may be used to enable network distributed
remultiplexing. A network is provided with one or more communication links, and a
plurality of nodes, interconnected by the communication links into a communications
network. A destination node receives a first bit stream containing data of one or more

programs via one of the communications links, the first bit stream having one or more

19

10

15

20

WO 99/37048 PCT/US99/00360

predetermined bit rates for portions thereof. The destination node can be a remultiplexér
node as described above and in any event includes a processor. The processor chooses at
least part of the received first bit stream for transmission, and schedules transmission of the
chosen part of the first bit stream so as to output the chosen part of the first bit stream in a
TS at a rate depending on a predetermined rate of the chosen part of said first bit stream.

In the alternative, the communication links collectively form a shared
communications medium. The nodes are divided into a first set of one or more nodes for
transmitting one or more bit streams onto the shared communications medium, and a
second set of one or more nodes for receiving the transmitted bit streams from the shared
communications medium. Tﬁe nodes of the sec<;nd set select portions of the transmitted
bit streams and transmit one or more remultiplexed TSs as a bit stream containing the
selected portions. Each of the transmitted remultiplexed TSs are different than the received
ones of the transmitted bit streams. A controller node is provided for selecting the first and
second sets of nodes and for causing the selected nodes to communicate the bit streams v-ia
the shared communication medium according to one of plural different signal flow patterns,
including at least one signal flow pattern that is different from a topological connection of
the nodes to the shared communication medium.

Finally, a method is provided for synchronizing the reference clock at each of
multiple circuits that receive or transmit transport packets in a remultiplexing system. The
reference clock at each circuit that receives transport packets is for indicating a time at
which each transport packet is received thereat. The reference clock at each circuit that
transmits transport packets is for indicating when to transmit each transport packet

therefrom. A master reference clock, to which each other one of the reference clocks is to -

20

10

15

WO 99/37048 PCT/US99/00360

be synchronized, is designated. The current time of the master reference clock is
periodically obtained. Each other reference clock is adjusted according to a difference
between the respective time at the other reference clocks and the current time of the master
reference clock so as to match a time of the respective reference clock to a corresponding
time of the master reference clock.

Thus, according to the invention, a more flexible remultiplexing system is provided.

The increased flexibility enhances multiplexing yet decreases overall system cost.

Brief Description of the Drawing

FIG 1 shows a remultiplexing environment according to another embodiment of the
present invention.

FIG 2 shows a remultiplexer node using an asynchronous platform according to an
embodiment of the present invention.

FIG 3 shows a flow chart which schematically illustrates how transport packets are
processed depending on their PIDs in a remultiplexing node according to an embodiment
of the present invention.

FIG 4 shows a network distributed remultiplexer according to an embodiment of the

present invention.

Detailed Description of the Inventio

For sake of clarity, the description of the invention is divided into sections.

21

10

15

20

WO 99/37048 - PCT/US99/00360

Remultiplexer Environment and Overview
| FIG 1 shows a-basic remultiplexing environment 10 according to an embodiment
of the present invention. A controller 20 provides instructions to a remultiplexer 30 using,
for example, any remote procedure call (RPC) protocol. Examples of RPCs that can be
used include the digital d.istributed computing environment protocol (DCE) and the open
network computing prot.oco_l (ONC). DCE and ONC are network protocols employing
protocol stacks that allow a client process to execute a subroutine either locally on the same

platform (e.g., controller 20) or on a remote, different platform (e.g., in remultiplexer 30).

“In other words, the client process can issue control instructions by simple subroutine calls.

The DCE or ONC processes issue the appropriate signals and commands to the
remultiplexer 30 for effecting the desired control.

The controller 20 may be in the form of a computer, such as a PC compatible
computer. The controller 20 includes a processor 21, such as one or more Intel™ Pentium
II'™ integrated circuits, a main memory 23, a disk memory 25, a monitor and
keyboard/mouse 27 and one or more I/O devices 29 connected to a bus 24. The /O device
29 is any suitable /O device 29 for communicating with the remultiplexer 30, depending
on how the remultiplexer 30 is implemented. Examples of such an I/O device 29 include
an RS-422 interface, an Ethernet interface, a modem, aﬁd a USB interface.

The remultiplexer 30 is implemeﬁted with one or more networked “black boxes”.
In the example remultiplexer architecture described below, the remultiplexer 30 black
boxes may be stand alone PC compatible computers that are interconnected by
communications links such as Ethernet, ATM or DS3 communications links. For example,

remultiplexer 30 includes one or more black boxes which each are stand alone PC

22

10

15

20

WO 99/37048 PCT/US99/00360

compatible computers interconnected by an Ethernet network (10 BASE-T, 100 BASE-T
or 1000 BASE-T, etc.).

As shown, one or more to-be-remultiplexed TSs, namely, TS1, TS2 and TS3, are
received at the remultiplexer 30. As a result of the remultiplexing operation of the
remultiplexer 30, one or more TSs, namely, TS4 and TSS, are outputted from the
remultiplexer 30. The remultiplexed TSs TS4 and TS5 illustratively, include at least some
information (at least one transport packet) from the inputted TSs TS1, TS2 and TS3. At
least one storage device 40, e.g., a disk memory or server, is also provided. The storage
device 40 can produce TSs or data as inputted, to-be-remultiplexed information for
remultiplexing into the outputted TSs TS4 or TS5 by the remultiplexer 30. Likewise, the
storage device 40 can store TSs information or data produced by the remuitiplexer 30, such
as transport packets extracted or copied from the inputted TSs TS1, TS2 or TS3, other
information received at the remultiplexer 30 or information generated by the remultiplexer
30.

Also shown are one or more data injection sources 50 and one or more data
extraction destinations 60. These sources 50 and destinations 60 may themselves be
implemented as PC compatible computers. However, the sources 50 may also be devices
such as cameras, video tape players, communication demodulators/receivers and the
destinations | may be display monitors, video tape recorders, communications
modulators/transmitters, etc. The data injéction sources 50 supply TS, ES or other data to
the remultiplexér 30, e.g., for remultiplexing into the outputted TSs TS4 and/or TS5.
Likewise, the data extraction destinations 60 receive TS, ES or other data from the

remultiplexer 30, e.g., that is extracted from the inputted TSs TS1, TS2 and/or TS3. For

23

10

15

20

WO 99/37048 PCT/US99/00360

example, one data injection source 50 may be provided for producing each of the inputted,
to-be-remultiplexed TSs, TS1, TS2 and TS3 and one data extraction destination 60 may be
provided for receiving each outputted remultiplexed TS TS4 and TSS5.

The environment 10 may be viewed as a network. In such a case, the controller 20,
each data injection source 50, storage device 40, data extraction destination 60 and each
“networked black box” of the remultiplexer 30 in the environment 10 may be viewed as a
node of the communications network. Each node may be connected by a synchronous or
asynchronous communication link. In addition, the separation of the devices 20, 40, 50 and
60 from the remultiplexer 30 is merely for sake of convenience. In an alternative

embodiment, the devices 20, 40, 50 and 60 are part of the remultiplexer 30.

Remultiplexer Architecture

FIG 2 shows a basic architecture for one of the network black boxes or nodes 100
of the remultiplexer 30, referred to herein as a “remultiplexer node” 100. The particular
remultiplexer node 100 shown in FIG 2 can serve as the entire remultiplexer 30.
Alternatively, as will be appreciated from the discussion below, different portions of the
remultiplexer node 100 can be distributed in separate nodes that are interconnected to each
other by synchronous or asynchronous communication links. In yet another embodiment,
multiple remultiplexer nodes 100, having the same architecture as shown in FIG 2, are
interconnected to each other via synchronous or asynchronous communication links and
can be programmed to act in concert. These latter two embodiments are referred to herein

as network distributed remultiplexers.

24

10

15

20

WO 99/37048 PCT/US99/00360

Illustratively, the remultiplexer node 100 is a Windows NT™ compatible PC
computer platform. The remultiplexer node 100 includes one or more adaptors 110. Each
adaptor 110 is connected to a bus 130, which illustratively is a PCI compatible bus. A host
memory 120 is also connected to the bus 130. A processor 160, such as an Intel™ Pentium
II™ integrated circuit is also connected to the bus 130. It should be noted that the single
bus architecture shown in FIG 2 may be a simplified representation of a more complex
multiple bus st.ructure. Furthermore, more than one processor 160 may be present which
cooperate in performing the processing functions described below.

Ilustratively, two interfaces 140 and 150 are provided. These interfaces 140 and
150 are connected to the bus 130, although they may in fact be directly connected to an /O
expansion bus (not shown) which in turn is connected to the bus 130 via an I/O bridge (not
shown). The interface 140 illustratively is an asynchronous interface, such as an Ethernet
interface. This means that data transmitted via the interface 140 is not guaranteed to occur
at precisely any time and may experience a variable end-to-end delay. On the other hand,
the interface 150 is a synchronous interface, such as a T1 interface. Communication on the
communication link connected to the interface 150 is synchronized to a clock signal
maintained at the interface 150. Data is transmitted via the interface 150 at a particular time
and experiences a constant end-to-end delay.

FIG 2 also shows that the remultiplexer node 100 can have an optional
scrambler/descrambler (which may be implemented as an encryptor/decryptor) 170 and/or
a global positioning satellite (GPS) receiver 180. The scrambler/descrambler 170 is for

scrambling or descrambling data in transport packets. The GPS receiver 180 is for

25

10

15

20

WO 99/37048 PCT/US99/00360

receiving a uniform clock signal for purposes of synchronizing the remuitiplexer node 100.
The purpose and operation of these devices is described in greater detail below.

Each adaptor 110 is a specialized type of synchronous interface. Each adaptor 110
has one or more data link control circuits 112, a reference clock generator 113, one or more
descriptor and transport packet caches 114, an optional scrambler/descrambler 115 and one
or more DMA control circuits 116. These circuits may be part of one or more processors.
Preferably, they are implemented using finite state automata, i.e., as in one or more ASICs
or gate arrays (PGAs, FPGAs, etc.). The purpose of each of these circuits is described
below.

The reference clock generator 113 illustratively is a 32 bit roll-over counter that
counts at 27 MHZ. The system time produced by the reference clock generator 113 can be
received at the data link control circuit 112. Furthermore, the processor 160 can directly
access the reference clock generator 113 as follows. The processor 160 can read the current
system time from an /O register of the reference clock generator 113. The processor 160
can load a particular value into this same /O register of the reference clock generator 113.
Finally, the processor 160 can set the count frequency of the reference clock generator in
an adjustment register so that the reference clock generator 113 counts at a frequency
within a particular range.

The purpose of the cache 114 is to temporarily store the next one or more to-be-
outputted transport packets pending output from the adaptor 110 or the last one or more
transport packets recently received at the adaptor 110. The use of the cache 114 enables
transport packets to be received and stored or to be retrieved and outputted with minimal

latency (most notably without incurring transfer latency across the bus 130). The cache 114

26

10

15

20

WO 99/37048 PCT/US99/00360

also stores descriptor data for each transport packet. The purpose and structure of such
descriptors is described in greater detail below. In addition, the cache 114 stores a filter
map that can be downloaded and modified by the processor 160 in normal operation.
Illustratively, the cache 114 may also store control word information for use in scrambling
or descrambling, as described in greater detail below. In addition to the processor 160, the
cache 114 is accessed by the data link control circuit 112, the DMA control circuit 116 and
the optional scrambler/descrambler 115.

As is well known, the cache memory 114 may posses a facsimile or modified copy
of data in the host memory 120. Likewise, when needed, the cache 114 should obtain the
modified copy of any data in the host memory and not a stale copy in its possession. The
same is true for the host memory 120. An “ownership protocol” is employed whereby only
a single device, such as the cache memory 114 or host memory 120, has permission to
modify the contents of a data storage location at any one time. Herein, the cache memory
114 is said to obtain control of a data storage location when the cache memory has
exclusive control to modify the contents of such storage locations. Typically, the cache
memory 114 obtains control of the storage location and a facsimile copy of the data stored
therein, modifies its copy but defers writing the modifications of the data to the host
memory until a later time. By implication, when the cache memory writes data to a storage
location in the host memory, the cache memory 114 relinquishes control to the host
memory 120.

The DMA control circuit 116 is for transferring transport packet data and descriptor
data between the host memory 120 and the cache 114. The DMA control circuit 116 can

maintain a sufficient number of transport packets (and descriptors therefor) in the cache 114

27

10

15

20

WO 99/37048 PCT/US99/00360

to enable the data link control circuit 112 to output transport packets in the output TS
continuously (i.e., in successive time slots). The DMA control circuit 116 can also obtain
control of a sufficient number of descriptor storage locations, and the packet storage
locations to which they point, in the cache 114. The DMA control circuit 116 obtains
control of such descriptor and transport packet storage locations for the cache 114. This
enables continuous allocation of descriptors and transport packet storage locations to
incoming transport packets as they are received (i.e., from successive time slots).

The data link control circuit 112 is for receiving transport packets from an incoming
TS or for transmitting transport packets on an outgoing TS. When receiving transport
packets, the data link control circuit 112 filters out and retains only selected transport
packets received from the incoming TS as specified in a downloadable filter map (provided
by the processor 160). The data link control circuit 112 discards each other transport
packet. The data link control circuit 112 allocates the next unused descriptor to the
received transport packet and s.tores the received transport packet in the cache 114 for
transfer to the transport packet storage location to which the allocated descriptor points.
The data link control circuit 112 furthermore obtains the reference time from the reference
clock generator 113 corresponding to the receipt time of the transport packet. The data link
control circuit 112 records this time as the receipt time stamp in the descriptor that points
to the transport packet storage location in which the transport packet is stored.

When transmitting packets, the data link control circuit 112 retrieves descriptors for
outgoing transport packets from the cache 114 and transmits the corresponding transport
packets in time slots of the outgoing TS that occur when the time of the reference clock

generator 113 approximately equals the dispatch times indicated in the respective

28

10

15

20

WO 99/37048 PCT/US99/00360

descriptors. The data link control circuit 112 furthermore performs any final PCR
correction in outputted transport packets as necessary so that the PCR indicated in the
transport packets is synchronized with the precise alignment of the transport packet in the
outgoing TS.

The processor 160 is for receiving control instructions from the external controller
20 (FIG 1) and for transmitting commands to the adaptor 110, and the interfaces, 140 and
150 for purposes of controlling them. In response, to such instructions, the processor 160
generates a PID filter map and downloads it to the cache 114, or modifies the PID filter
map already resident in the cache 114, for use by the data link control circuit 112 in
selectively extracting desired transport packets. In addition, the pfocessor 160 generates
interrupt receive handlers for processing each received transport packet based on its PID.
Receipt interrupt handlers may cause the processor 160 to remap the PID of a transport
packet, estimate the departure time of a transport packet, extract the information in a
transport packet for further processing, etc. In addition, the processor 160 formulates and
executes transmit interrupt handlers which cause the processor to properly sequence
transport packets for output, to generate dispatch times for each transport packet, to
coarsely correct PCRs in transport packets and to insert PSI into an outputted TS. The
processor 160 may also assist in scrambling and descrambling as described in greater detail
below.

The host memory 120 is for storing transport packets and descriptors associated
therewith. The host memory 120 storage locations are organized as follows. A buffer 122
is provided containing multiple reusable transport packet storage locations for use as a

transport packet pool. Descriptor storage locations 129 are organized into multiple rings

29

10

15

20

WO 99/37048 PCT/US99/00360

124. Each ring 124 is a sequence of descriptor storage locations 129 from a starting
memory address or top of ring 124-1 to an ending memory address or bottom of ring 124-2.
One ring 124 is provided for each outgoing TS transmitted from the remultiplexer node 100
and one ring 124 is provided for each incoming TS recci.ved at the remultiplexer node 100.
Other rings 124 may be provided as described in greater detail below.

A queue is implemented in each ring 124 by designating a pointer 124-3 to a head
of the queue or first used/allocated descriptor storage location 129 in the queue and a
pointer 124-4 to a tail of the queue or last used/allocated descriptor storage location 129 in
the queue. Descriptor storage locations 129 are allocated for incoming transport packets
starting with the unused/non-allocated descriptor storage location 129 immediately
following the tail 124-4. Descriptor storage locations 129 for outgoing transport packets
are retrieved from the queue starting from the descriptor storage location 129 pointed to by
the head 124-3 and proceeding in sequence to the tail 124-4. Whenever the descriptor of
the descriptor storage location 129 at the end of the ring 124-2 is reached, allocation or
retrieval of descriptors from descriptor storage locations 129 continues with the descriptor
of the descriptor storage location 129 at the top of the ring 124-1.

As shown, each descriptor stored in each descriptor storage location 129 includes
a number of fields 129-1, 129-2, 129-3, 129-4, 129-5, 129-6, 129-7, 129-8, 129-9 and 129-
10. Briefly stated, the purpose of each of these fields is as follows. The field 129-1 is for
storing command attributes. The processor 160 can use individual bits of the command
attribute field to control the transport packet transmission and descriptor data retrieval of
the adaptor 110. For instance, the processor 160 can preset a bit in the field 129-1 of a

descriptor in the descriptor storage location 129 pointed to by the bottom 124-2 of the ring

30

10

15

20

WO 99/37048 PCT/US99/00360

124 to indicate that the descriptor storage location 129 pointed to by the top pointer 124-1
follows the descriptor storage location 129 pointed to by the bottom pointer 124-2.

The field 129-2 is for storing software status bits. These bits are neither accessed
nor modified by the adaptor 110 and can be used by the processor 160 for any purposes not
involving the adaptor 110.

The field 129-3 is for storing the number of bytes of a to-be-outputted, outgoing
transport packet (typically 188 bytes for MPEG-2 transport packets but can be set to a
larger or smaller number when the descriptor points to packets according to a different
transport protocol or for “gather” and “scatter” support, where packets are fragmented into
multiple storage locations or assembled from fragments stored in multiple packet storage
locations).

The field 129-4 is for storing a pointer to the transport packet storage location to
which the descriptor corresponds. This is illustrated in FIG 2 by use of arrows from the
descriptors in descriptor storage locations 129 in the ring 124 to specific storage locations
of the transport packet pool 122.

The field 129-5 is for storing the receipt time for an incoming recci_/ed transport
packet or for storing the dispatch time of an outgoing to-be-transmitted transport packet.

The field 129-6 is for storing various exceptions/errors which may have occurred.
The bits of this field may be used to indicate a bus 130 error, a data link error on the
communication link to which the data link control circuit 112 is connected, receipt of a
short or long packet (having less than or more than 188 bytes), etc.

The field 129-7 is for storing status bits that indicate different status aspects of a

descriptor such as whether or not the descriptor is valid, invalid pointing to an errored

31

10

15

20

WO 99/37048 PCT/US99/00360

packet, etc. For example, suppose that multiple devices must process the descriptor and/or
packet to which it points in succession. In such a case, four status bits are preferably
provided. The first two of these bits can be set to the values 0,1,2 or 3. The value 0
indicates that the descriptor is invalid. The value 1 indicates that the descriptor is valid and
may be processed by the last device that must process the descriptor and/or packet to which
it points. The value 2 indicates that the descriptor is valid and may be processed by the
second to last device that must process the descriptor and/or packet to which it points. The
value 3 indicates that the descriptor is valid and may be processed by the third to last device
that must process the descriptor and/or packet to which it points. The latter two bits
indicate whether or not the descriptor has been fetched from the host memory 120 to the
cache 114 and whether or not the descriptor has completed processing at the adaptor 110
and may be stored in the host memory 120. Other status bits may be provided as described
in greater detail below.

The field 129-8 contains a transfer count indicating the number of bytes in a
received incoming transport packet.

The field 129-9 is for storing a scrambling/descrambling control word or other
information for use in scrambling or descrambling. For example, the processor 160 can
store a control word (encryption/decryption key) or base address to a table of control words
stored in the cache 114 in this field 129-9.

Field 129-10 is for storing a scheduled estimated departure time, actual departure
time or actual receipt time. As described in greater detail below, this field is used by the
processor 160 for ordering received incoming transport packets for output or for noting the

receipt time of incoming transport packets.

32

10

15

20

WO 99/37048 PCT/US99/00360

Illustratively, one data link control circuit 112, one DMA control circuit 116 and
one ring 124 is needed for receiving transport packets at a single input port, and one data
link control circuit 112, one DMA control circuit 116 and one ring 124 is needed for
transmitting transport packets from a single output port. Descriptors stored in queues
associated with input ports are referred to herein as receipt descriptors and descriptors
stored in queues associated with output ports are referred to herein as transmit descriptors.
As noted below, the input and output ports referred to above may be the input or output port
of the communication link to which the data link control circuit 112 is connected or the
input or output port of the communication link of another interface 140 or 150 in the
remultiplexer node 100. The adaptor 110 is shown as having only a single data link control
circuit 112 and a single DMA control circuit 116. This is merely for sake of illustration--
multiple data link control circuits 112 and DMA control circuits 116 can be provided on
the same adaptor 110. Alternatively, or additionally, multiple adaptors 110 are provided

in the remultiplexer node 100.

Basic Transport Packet Receipt, Remultiplexing and Transmission
Consider now the basic operation of the remultiplexer node 100. The operator is
provided with a number of choices in how to operate the remultiplexer node 100. In a first
manner of operating the remultiplexer node 100, assume that the operator wishes to
selectively combine program information of two TSs, namely, TS1 and TS2, into a third
TS, namely, TS3. In this scenario, assume that the operator does not initially know what
programs, ESs or PIDs are contained in the two to-be-remultiplexed TSs TS1 and TS2. In

addition, TSI illustratively is received at a first adaptor 110, TS2 illustratively is received

33

10

13

20

WO 99/37048 PCT/US99/00360

at a second adaptor 110 and TS3 illustratively is transmitted from a third adaptor 110 of the
same remultiplexer node 100. As will be appreciated from the description below, each of
TS1 and TS2 may instead be received via synchronous or asynchronous interfaces at the
same node or at different nodes, and selected portions of TS1 and TS2 may be '
communicated to a third node via a network of arbitrary configuration for selective
combination to form TS3 at the third node.

The operation according to this manner may be summarized as (1) acquiring the
content information (program, ES, PAT, PMT, CAT, NIT, etc., and PIDs thereof) of the
inputted, to-be-remultiplexed TSs TS1 and TS2; (2) reporting the content information to
the operator so that the operator can formulate a user specification; and (3) receiving a user
specification for constructing the outputted remultiplexed TS TS3 and dynamically
constructing the remultiplexed TS TS3 from the content of the inputted to-be-remultiplexed
TSs TS1 and TS2 according to the user specification.

To enable acquisition of the content information, the transport processor 160
allocates one receipt queue to ear;h of the first and second adaptors 110 that receive the TSs
TS1 and TS2, respectively. To acquire the content of the TSs TS1 and TS2, no transport
packets are discarded at the adaptors 110 for TS1 or TS2 initially. Thus, the processor 160

loads a filter map into the caches 114 of each of the first and second adaptors 110 receiving

“the TSs TS1 and TS2 causing each transport packet to be retained and transferred to the -

host memory 120. As each transport packet of a TS (e.g., the TS1) is received at its
respective adaptor 110, the data link control circuit 112 allocates the next unused descriptor
(following the descriptor stored in the descriptor storage location at the tail 124-4 of the

receipt queue), to the received, incoming transport packet. The data link control circuit 112

34

10

15

20

WO 99/37048 PCT/US99/00360

stores each received transport packet in a transport packet storage location of the cache 114
to which the allocated descriptor points.

The DMA control circuit 116 writes each transport packet to its corresponding
storage location of the pool 122 in the host memory 120 and writes descriptor data of the
descriptors allocated to the transport packets to their respective descriptor storage locations
of the receipt queue. The DMA control circuit 116 may furthermore obtain control of the
next few non-allocated descriptor storage locations 129 of the receipt queue (following the
storage locations of the sequence of descriptors 129 for which the DMA control circuit 116
had obtained control previously), copies of the descriptors stored therein and the transport
packet storage locations to which 'the descriptors point. Control of such unused, non
allocated descriptors and transport packet storage locations is provided to the cache 114 for
used by the data link control circuit 112 (i.e., allocation to future transport packets received
from TS1).

After the DMA control circuit 116 writes i21 transport packets and data of
descriptors allocated thereto to the pool 122 and the receipt queue, the DMA control circuit
116 generates an interrupt. Illustratively, the number i may be selected by the operator
using controller 20 and set by the processor 160. The interrupt causes the processor 160
to execute an appropriate receipt “PID” handler subrouﬁne for each received transport
packet. Alternatively, another technique such as polling or a timer based process can be
used to initiate the processor 160 to execute a receipt PID handler subroutine for each
received transport packet. For sake of clarity, an interrupt paradigm is used to illustrate the
invention herein. Referring to FIG 3, the processor 160 illustratively has a set of PID

handler subroutines for each adaptor 110 (or other device) that receives or transmits a TS

35

10

15

20

WO 99/37048 PCT/US99/00360

during a remultiplexing session. FIG 3 illustrates two types of PID handler subroutine sets,
namely, a receipt PID handler subroutine set and a transmit PID handler subroutine set.
Each DMA control circuit 116 generates a recognizably different interrupt thereby enabling
the processor 160 to determine which set of PID handler subroutines to use. In response
to the interrupt by the DMA control circuit 116, the processor 160 executes step S2
according to which the processor 160 examines the PID of each transport packet pointed
to by a recently stored descriptor in the receipt queue of the interrupting adaptor 110. For
each PID, the processor 160 consults a table of pointers to receipt PID handler subroutines
402 specific to the adaptor 110 (or other device) that'interrupted the processor 160.

Assume that the first adaptor 110 receiving TS1 interrupts the processor 160, in
which case the processor 160 determines to consult a table of pointers to receipt PID
handler subroutines 402 specific to the adaptor 110 that received the TS TS1. The table of
pointers to receipt PID handler subroutines includes 8192 entries, including one entry
indexed by each permissible PID (which PIDs have 13 bits according to MPEG-2). Each
indexed entry contains a pointer to, or address of, RIVO, RIV1,...,,.RIV8191, a subroutine
to be executed by the processor 160. Using the PID of each transport packet, the processor
160 indexes the entry of the table of pointers to receipt PID handler subroutines 402 in
order to identify the pointer to the subroutine to be executed for that particular transport
packet.

Each subroutine pointed to by the respective pointer, and executed by the processor
160, is specifically mapped to each PID by virtue of the pointer table 402 to achieve the
user’s specification. Each subroutine is advantageously predefined and simply mapped by

the pointer table 402 according to the user specification. Each subroutine is composed of

36

10

15

20

WO 99/37048 PCT/US99/00360

a collection of one or more basic building block processes. Some examples of basic
building block processes include:

(1) PAT acquisition: Initially, this process is included in the subroutine pointed
to by RIVO, the receive PID handler subroutine for PID 0x0000. In executing this process,
the processor 160 illustratively extracts the section of the PAT carried in the currently
processed transport packet and loads the PAT section into the PAT maintained in memory.
Note that multiple versions of the PAT may be used as the programs carried in the TS can
change from time to time. The processor 160 is capable of identifying different versions
of the PAT and separately aggregating and maintaining a copy of each version of the PAT
in the host memory 120. The processor 160 is also capable of identifying which version
of the PAT is currently in use at any time based on information contained in various
sections of the PAT. The processor 160 also uses information carried in each updated PAT
section to identify program numbers of programs carried in the TS at that moment and the
PIDs of PMT sections or program defmit.ions for such program numbers. Using such
program numbers, the processor 160 can modify the pointer table 402 for the receipt PID
handler subroutine to insert pointer for appropriate PIDs (labeling transport packets bearing
PMT sections) for executing a subroutine containing a process for acquiring PMT
sections/program definitions.

(2) PMT section/program definition acquisition: In this process, the processor
160 extracts the PMT section or program definition contained in the currently processed
transport packet and updates the respective portion of the PMT with the extracted program
definition or PMT section data. Like the PAT, multiple versions of the PMT may be

utilized and the processor 160 can determine in which PMT to store the extracted PMT

37

10

15

20

WO 99/37048 PCT/US99/00360

section or program definition data. The processor 160 may use PMT information to update
a PID filter map used to discard transport packets of programs not to be included in the
remultiplexed TS, to identify control words for descrambling ESs and to select subroutines
for Aprocessing PCRs contained in transport packets having PIDs as identified in the PMT.

3) PID remapping: This causes the processor 160 to overwrite the PID of the
corresponding packet with a different PID. This is desirable to ensure uniqueness of PID
assignment. That is, MPEG-2 requires that transport packets carrying different contents,
e.g., data of different ESs, data of different PSI streams, etc., be labeled with mutually
different PIDs, if such different content carrying transport packets are to be multiplexed
into, and carried in, the same outputted remu]tipiexed TS. Otherwise, a decoder or other
device would not be able to distinguish transport packets carrying different kinds of data
for extraction, decoding, etc. It is possible that a certain PID is used in TS1 to label
transport packets bearing a first type of data and the same PID is used in TS2 to label
transport packets bearing a second type of data. If the transport packets of the first and
second types are to be included in the outputted remultiplexed TS TS3, then at least one of
the two types of transport packets should be re-labeled with a new PID to ensure
uniqueness.

(4) Transport packet discarding: As the name suggests, the processor 160 simply
discards the transport packet. To this end, the processor 160 deallocates the descriptor
pointing to the discarded transport packet. Descriptor deallocation can be achieved by the
processor 160 adjusting the sequence of descriptors resident in the descriptor storage
locations 129 of the queue to remove the descriptor for the deleted transport packet (e.g.,

the processor identifies all of the allocated descriptors that follow the descriptor of the to-

38

10

15

20

WO 99/37048 PCT/US99/00360

be-deleted transport packet in the ring 124 and moves each to the descriptor storage space
of the immediately preceding descriptor). The deallocation of the descriptor creates a
descriptor storage space 129 in the receipt queue for reallocation.

(5) PCR flag setting: The PMT indicates, for each program, the PIDs of the
transport packets that carry the PCRs. However, only some of such transport packets carry
PCRs. This can be easily determined by the processor 160 determining if the appropriate
indicators in the transport packet are set (the adaption_field_control bi.ts in the transport
packet header and PCR_flag bit in the adaption field). If the processor 160 determines that
a PCR is present, the processor 160 sets a PCR flag bit in the attribute field 129-1 of the
descriptor 129 associated with the respective packet. The purpose of this attribute flag bit
is described in greater detail below.

In addition, the processor 160 illustratively calculates the current drift of the
reference clock generators 113 relative to the encoder system time clock of the program of
which the PCR is a sample. Drift may be determined by the following formula:

drift = ARTSI12 - APCR12;
ARTS12 =RTS2 - RTS1; and
APCR12 =PCRI1 - PCR2
where: APCR12 is a difference in successive PCRs for this program,

PCR2 is the PCR in the currently processed transport packet,

PCRI1 is the previously received PCR for this program,

ARTS12 is a difference in successive receipt time stamps,

RTS?2 is the receipt time stamp recorded for the currently processed transport

packet containing PCR2, and

39

10

15

20

WO 99/37048 PCT/US99/00360

" RTSI is a previous receipt time stamp for the transport packet containing PCR1.
After calculating the drift, PCR1 and RTS]1 are set equal to PCR2 and RTS2, respectively.
The drift is used for adjusting the PCR (if necessary) as described below.

© Estimated departure time calculation: According to this process, the
processor 160 estimates the (ideal) departure time of the transport packet. Illustratively,
t}u:s process is included in the receive interrupt handler for each received incoming transport
packet to be remultiplexed into an outgoing TS. The estimated departure time can be
estimated from the receipt time of the transport packet (in the field 129-5) and the known
internal buffering delay at the remultiplexing node 100. The processor 160 writes the
expected departure time in the field 129-10.

@) Scrambling/descrambling control word information insertion: Typically,
in either a scrambling or descrambling technique, a dynamically varying control word, such
as an encryption or decryption key, is needed to actually scramble or descramble data in the
transport packet. Common scrambling and descrambling techniques use odd and even
keys, according to which, one key is used for decrypting ES data and the next key to be
used subsequently is transferred contemporaneously in the TS. A signal is then transmitted
indicating that the most recently transferred key should now be used.
Scrambling/descrambling control words can be ES specific or used for a group of ESs (over
an entire “conditional access system”). Descrambling or scrambling control words may be -
maintained in a PID index-able table at the remultiplexer node 100. As described in greater
detail below, the processor 160 in executing this process may insert the base address for the

control word table, or the control word itself, into the field 129-9 of a descriptor.

40

10

15

20

WO 99/37048 PCT/US99/00360

Initially, the processor 160 selects a PID handler for acquiring the PAT of each
received TS TS1 and TS2 and thereafter discarding each processed transport packet. In the
course of receiving the PAT, PIDs of other PSI bearing transport packets, such as program
definitions/PMT sections, the NIT, and the CAT, and PIDs of other streams such as ES
streams, ECM streams, EMM streams, etc. are obtained. The receipt PID handler
subroutine for the PID of the PAT illustratively selects receipt PID handler subroutines for
acquiring the PMT, NIT, CAT, etc. This can be achieved easily by having such subroutines
available and simply changing the pointers of the entries (indexed by appropriate identified
PIDs) in the table 402 to point to such PID handler subroutines. Note that such a simple
PID handler subroutine selection process can be dynamically effected even while transport
packets are received and processed for TS1 and TS2. The advantages of this are described
in greater detail below.

Eventually, a sufficient amount of PSI regarding each TS TS1 and TS2 is acquired
1o enable the operator to create a user specification of the information to be outputted in the
remultiplexed TS TS3. The processor 160 illustratively transmits to the controller 20 the
acquired PSI information, e.g., using the asynchronous interface 140. Sufficient
information for selecting a user specification is transmitted to the controller 20. This

information may be selective, e.g., just a channel map of each TS showing the program

‘numbers contained therein and the different kinds of ESs (described with descriptive

service designations such as video, audiol, second audio presentation, closed caption text,
etc.) Alternatively, the information may be exhaustive e.g., including the PIDs of each
program, ECMs of ESs thereof, etc., and the controller 20 simply displays the information

to the operator in a coherent and useful fashion.

4]

10

15

20

WO 99/37048 PCT/US99/00360

Using the information provided, the operator generates a user specification for the
outputted to-be-remultiplexed TS TS3. This user specification may specify:

(1) The program numbers in each TS TS1 and TS2 to be retained and outputted

in the remultiplexed TS, TS3,

(2) ESs of retained programs to be retained or discarded,

3) ESs, groups of ESs, programs or groups of programs to be descrambled
and/or scrambled, and the source of the control words to be used in
scrambling each ES, group of ESs, program or groups of programs,

4) Any new ECMs or EMMs to be injected or included in the outputted
remultiplexed TS TS3, and

(5) Any new PSI information not automatically implicated from the above
selections such as an NIT or CAT to be placed in the outputted TS TS3,
specific PIDs that are to be remapped and the new PIDs to which they
should be remapped, PIDs assigned to other information (e.g., bursty data,
as described below) generated at the remultiplexer node and carried in the
TS TS3, etc.

The user specification is then transmitted from the controller 20 to the remultiplexer node
100, e.g., via the asynchronous interface 140.

The processor 160 receives the user specification and responds by selecting the
appropriate receive PID handler subroutines for appropriate PIDs of each received, to-be-
remultiplexed TS, TS1 and TS2. For example, for each PID labeling a transport packet
containing data that is to be retained, the processor 160 selects a subroutine in which the

processor inserts the process for estimating the departure time. For each PID labeling a

42

10

15

20

WO 99/37048 PCT/US99/00360

transport packet containing scrambled data, the processor 160 selects a subroutine
containing a process for selecting the appropriate control word and inserting it into the
descriptor associated with such a transport packet. For each PID labeling a transport packet
containing a PCR, the processor 160 can select a subroutine containing the process for
setting the PCR flag and for calculating the drift, and so on. The dynamic adjustment of
user specification and/or PSI data is described in greater detail below.

The processor 160 allocates a transmit queue to each device that transmits a
remultiplexed TS, i.e., the third adaptor 110 that outputs the TS TS3. The processor 160 -
furthermore loads the PID filter maps in each cache 114 of the first and second adaptors
110 that receive the TSs TS1 and TS2 with the appropriate values for retaining those
transport packets to be outputted in remultiplexed TS TS3, for retaining other transport
packets containing PSI, for keeping track of the contents of TS1, and TS2 and for
discarding each other transport packet.

In addition to selecting receive PID handler subroutines, allocating transmit queues
and loading the appropriate PID filter map modifications, the processor 160 illustratively
selects a set of transmit PID handler subroutines for each adaptor (or other device) that
outputs a remultiplexed TS. This is shown in FIG 3. The transmit PID handler subroutines
are selected on a PID and transmit TS basis. As above, in response to receiving an
identifiable interrupt (e.g., from a data link control circuit 112 of an adaptor 110 that
transmits an outputted TS, such as TS3) the processor 160 executes step S4. In step S4, the
processor 160 examines descriptors from the receipt queues (and/or possibly other queues
containing descriptors of transport packets not yet scheduled for output) and identifies up

to j=1 descriptors pointing to transport packets to be outputted from the interrupting adaptor

43

10

15

20

WO 99/37048 PCT/US99/00360

110. The number j may illustratively be programmable and advantageously is set equal to
the number k of transport packets transmitted from a specific adaptor 110 from which an
output TS is transmitted between each time the specific adaptor 110 interrupts the processor
160.

In executing step S4, the processor 160 examines each receive queue for descriptors
pointing to transport packets that are destined to the specific output TS. The processor 160
determines which transport packets are destined to the output TS by consulting a table of
pointers to transmit PID handler subroutines 404. As with the table 402, the table 404
includes one entry for, and indexed by, each PID 0x0000 to Ox1FFF. Each indexed entry
contains a pointer to, or address of, TIVQ, TIV1,..,, TIV8191, a subroutine to be executed
in response to a respective PID. The table of pointers to transmit PID handler subroutines
404 is formulated by the processor 160 according to the user specification received from
the controller 20, and modified as described below.

The following are illustrative processes that can be combined into a transmit PID
handler subroutine:

(1) Nothing: If the current transport packet is not to be outputted in the
remultiplexed TS (or other stream) of the device that issued the transmit interrupt to the

processor 160, the PID of such a transport packet maps to a subroutine containing only this

‘process. According to this process, the processor 160 simply skips the transport packet and

descriptor therefor. The examined descriptor is not counted as one of the j transport packets
to be outputted from the specific adaptor 110 that interrupted the processor 160.
(2) Order descriptor for transmission: If the current transport packet is to be

outputted in the remultiplexed TS (or other stream) of the device that issued the transmit

44

10

15

20

WO 99/37048 PCT/US99/00360

interrupt to the processor, the PID of such a transport packet maps to a subroutine
containing this process (as well as possibly others). According to this process, the
processor 160 allocates a transmit descriptor for this transport packet. The processor 160
then copies pertinent information in the receipt descriptor that points to the transport packet
to the newly allocated transmit descriptor. The allocated transmit descriptor is then ordered
in the proper sequence within a transmit queue, associated with the device that requested
the interrupt, for transmission. In particular, the processor 160 compares the estimated
departure time of the packet, to which the newly allocated descriptor points, to the actual
dispatch time (the actual time that the transport packet will be transmitted) recorded in the
other descriptors in the transmit queue. If possible, the descriptor is placed in the transmit
queue before each descriptor with a later actual dispatch time than the estimated departure
time of the descriptor and after each descriptor with an earlier actual dispatch time than the
estimated departure time of the descriptor. Such an insertion can be achieved by copying
each transmit descriptor, of thg sequence of transmit descriptors with later actual dispatch
times than the estimated dispatch time of the to-be-inserted descriptor, to the respective
sequentially next descriptor storage location 129 of the queue. The data of the allocated
transmit descriptor can then be stored in the descriptor storage location 129 made available
by copying the sequence.

3) Actual dispatch time determination: The processor 160 can determine the
actual dispatch time of the transport packet to which the allocated descriptor points based
on the estimated departure time of the transport packet. The actual dispatch time is set by
determining in which transport packet time slot of the outputted remultiplexed TS T3 to

transmit the transport packet (to which the newly allocated and inserted transmit descriptor

45

10

15

20

WO 99/37048 ' PCT/US99/00360

points). That is, the transport packet time slot of the outputted TS T3 nearest in time to the
estimated departure time is selected. The transport packet is presumed to be outputted at
the time of the selected transport packet time slot, relativle to the internal reference time as
established by the reference clock generator(s) 113 of the adaptor(s) 110 (which are
mutually synchronized as described below). The time associated with the respective
transport packet slot time is assigned as the actual dispatch time. The actual dispatch time
is then stored in field 129-5 of thg transmit descriptor. As described below, the actual
dispatch time is really an approximate time at which the data link control circuit 112 of the
third adaptor 110 (which outputs the remuitiplexed TS TS3) submits the corresponding
transport packet for output. The actual output time of the transport packet depends on the
alignment of the transport packet time slots, as established by an external clock not known
to the processor 160. Additional steps may be carried out, as described below, to dejitter
PCRs as a result of this misalignment.

Consider that the bit rates of the TS from which the packet was received (i.e., TS1
or TS2) may be different from the bit rate of the outputted TS, namely TS3. In addition,
the transport packets will be internally buffered for a predetermined delay (that depends on
the length of the receipt and transmit queues). Nevertheless, assuming that there is no
contention between transport packets of different received TSs for the same transport
packet slot of the outputted remultiplexed TS TS3, all transport packets will incur
approximately the same latency in the remultiplexer node 100. Since the average latency
is the same, no jitter is introduced into the transport packets.

Consider now the case that two transport packets are received at nearly the same

time from different TSs, i.e., TS1 and TS2, and both are to be outputted in the

46

10

15

20

WO 99/37048 PCT/US99/00360

remultiplexed TS TS3. Both transport packets may have different estimated departure
times that nevertheless correspond to (are nearest in time to) the same transport packet time
slot of the outputted remultiplexed TS TS3. The transport packet having the earliest
estimated departure time (or receipt time) is assigned to the time slot and the actual dispatch

time of this time slot. The other transport packet is assigned the next transport packet time

slot of the outputted remultiplexed TS TS3 and the actual dispatch time thereof. Note that

the latency incurred by the transport packet assigned to the next time slot is different from
the average latency incurred by other transport packets of that program. Thus, the
processor 160 illustratively takes steps to remove the latency incurred by this transport
packet, including adjusting a PCR of the transport packet (if a PCR is contained therein).

(4) PCR drift and latency adjustment: This process illustratively is contained
in the subroutine pointed to by the pointer of the table 404 indexed by the PIDs of transport
packets containing PCRs. The processor 160 determines that PCR latency adjustment is
only necessary if a transport packet is not assigned to the transport packet time slot of the
outputted remultiplexed TS TS3 nearest in time to the estimated departure time of the
transport packet (as is done for other transport packets of that program) and if the PCR flag
is set in the respective receipt descriptor. PCRs are corrected for the displacement in time

incurred by the assignment to the non-ideal slot. This adjustment equals the number of

‘slots from the ideal slot by which the transport packet is displaced times the slot time.

All PCR’s are adjusted for drift as described below unless the input and output TSs
are exactly aligned in time or the PCR is received from an asynchronous communication
link. In the former case, the drift of the internal clock does not affect the timing at which

PCR’s are outputted. In the latter case, a different drift adjustment is used as described

47

10

15

20

WO 99/37048 PCT/US99/00360

below. In all other cases, the time at which received PCR’s are outputted is affected by
drift of the reference clock generator 113 of the adaptors 110 which received the transport
packet and the adaptor 110 that transmits the transport packet, relative to the program clock
ofthe PCR. That is, the transport packet containing the PCR is stamped with a receipt time
stamp obtained from the reference clock generator 113. This receipt time stamp is used to
determine the estimated departure time and the actual dispatch time. As described in detail
below, transport packets are dispatched according to thgir actual dispatch time relative to
the reference clock generator 113 on the adaptor 110 that transmits the TS TS3, and all
reference clock generators 113 of all adaptors 110 are maintained in synchronicity.
However, the reference clock generators 113, while all synchronized to each other, are
subject to drift relative to the encoder system time clock that generated the transport packet
and PCR thereof. This drift can impact the time at which each PCR is outputted from the
remultiplexer node 100 in the outputted remultiplexed TS such as TS3.

According to the invention, the remultiplexer node 100 corrects for such drift. As
noted above, part of the receipt handler subroutine for PCRs of each program is to maintain
a current measure of drift. A measure of drift of the reference clock generators 113 relative
to the encoder system time clock of each program is maintained. For each PCR, the current
drift for the program of the PCR (i.e., between the reference clock generators 113 and the
encoder system time clock of that program) is subtracted from the PCR.

With the above-noted allocation of queues, selection of PID handler subroutines,
and modification of PID filter maps, remultiplexing is performed as follows. The transport
packets of TS1 are received at the data link control circuit 112 of the first adaptor 110.

Likewise, the transport packets of TS2 are received at the data link control circuit 112 of

48

10

15

20

WO 99/37048 PCT/US99/00360

the second adaptor 110. The data link control circuit 112 in each of the first and second
adaptors 110 consults the . local PID filter map stored in the cache 114 thereat and
selectively discards each transport packet having a PID indicating that the transport packet
is not to be retained. Each data link control circuit 112 retrieves the next unused/non-
allocated descriptor from the cache 114 apd determines the transport packet storage location
associated with the descriptor. (As noted above and below, the DMA control circuit 116
continuously obtains control of a sequence of one or more of the next unused, non-allocated
descriptors of the receipt queue assigned to the input port of the data link control circuit 112
and the transport packet storage locations to which these descriptors point.) The next
unused, non-allocated descriptor follows the descriptor stored in the descriptor storage
location 129 pointed to by the tail pointer 129-4, which tail pointer 129-4 is available to the
data link control circuit 112. (As noted above, if the tail pointer 129-4 equals the bottom
of the ring address 129-2, the descriptor pointed to by the tail pointer 129-4 will have the
end of descriptor ring command bit set in field 129-7 by the processor 160. This will cause
the data link control circuit 112 to allocate the descriptor stored in the descriptor storage
location 129 at the top of the ring address. 129-1, using a wrap-around addressing
technique.) The data link control circuit 112 obtains the time of the reference clock

generator 113 corresponding to the time the first byte of the transport packet is received and

stores this value as the receipt time stamp in the field 129-5 of the allocated descriptor. The

data link control circuit 112 stores the number of bytes of the received transport packet in
the field 129-8. Also, if any errors occurred in receiving the transport packet (e.g., loss of
data link carrier of TS1, short packet, long packet, errored packet, etc.), the data link control

circuit 112 indicates such errors by setting appropriate exception bits of 129-6. The data

49

10

15

20

WO 99/37048 PCT/US99/00360

link control circuit 112 then sets a bit in the status field 129-7 indicating that the descriptor
129 has been processed or processed with exceptions and stores the transport packet at the
transport packet storage location of cache 114 pointed to by the pointer in field 129-4.
(Note that in the case of a long packet, a sequence of more than one of the next, unused
non-allocated descriptors may be allocated to the received transport packet and the excess
data stored in the packet storage locations associated with such descriptors. An appropriate
gather/scatter bit is set in the attribute field 129-1 of the first of the descriptors to indicate
that the packet has more data than in the single transport packet storage space associated
with the first of the descriptors. A corresponding bit may also be set in the attribute field
129-1 of the last of the descriptors to indicate that it is the last descriptor of a multi-
descriptor transfer. Such a long packet typically occurs when the adaptor receives packets
from a stream other than a TS.)

The DMA control circuit 116 writes the transport packet to its corresponding
transport packet storage location of transport packet pool 122 in the host memory 120. The
DMA control circuit 116 also writes data of the descriptor that points to the written
transport packet to the respective descriptor storage location 129 of the receipt queue
assigned to the respective adaptor 110. Noté that the DMA control circuit 116 can identify
which transport packets to write to the host memory 120 by determining which descriptors
have the processing completed status bits in the field 129-7 set, and the transport packet
storage locations to which such descriptors point. Note that the DMA control circuit 116
may write data of descriptors and transport packets one by one as each is completed.

Alternatively, the DMA control circuit 116 may allow a certain threshold number of

50

10

15

20

WO 99/37048 PCT/US99/00360

transport packets and descriptors to accumulate. The DMA control circuit 116 then writes
data of a sequence of i>1 multiple completed descriptors and transport packets.

In one embodiment, a scrambler/descrambler circuit 115 is placed on the adaptor
110. In such a case, prior to the DMA control circuit 116 writing data of a transport packet
to the host memory 120, the scrambler/descrambler circuit 115 descrambles each transport
packet for which descrambling ﬁxust be performed. This is described in greater detail
below.

When the DMA control circuit 116 writes descriptor data and transport packets to
the host memory 130, the DMA control circuit 116 interrupts the processor 160. Such
interrupts may be initiated by the DMA control circuit 116 every i21 descriptors for which
data is written to the host memory 130. The interrupt causes the processor 160 to execute
one of the receipt PID handler subroutines for each transport packet which is both PID and
input TS specific. As noted above, the receipt PID handler subroutines are selected by
appropriate alteration of the pointers in the table 402 so that the processor 160, amongst
other things, discards transport packets not to be outputte;d in the remultiplexed TS, writes
an estimated departure time in the descriptors pointing to transport packets that are to be
outputted and sets the PCR flag bit in the descriptors pointing to transport packets
containing PCRs. In addition, the selected receipt PID handler subroutines preferably cause
the processor 160 to continuously acquire and update thé PSI tables, adjust the PID filter
map and select additional receipt PID handler subroutines as necessary to effect a certain
user specification. For example, a user specification can specify that a particular program
number is to be continuously outputted in the remultiplexed TS TS3. However, the ESs

that make up this program are subject to change due to, amongst other things, reaching an

51

10

15

20

WO 99/37048 PCT/US99/00360

event boundary. Preferably, the processor 160 will detect such changes in ES make up by
monitoring changes to the PAT and PMT and will change the PID filter map and select
receipt PID handler subroutines as necessary to continuously cause the ESs of the selected
program to be outputted in the remultiplexed TS TS3, whatever the make up of that
program is from moment to moment.

Contemporaneously while performing the above functions associated with receiving
transport packets, a DMA control circuit 116 and data control link circuit 112 on the third
adaptor 110 also perform certain functions associated with transmitting transport packets
in TS3. Each time the data link control circuit 112 of this third adaptor 110 outputs k21
transport packets, the data link control circuit 112 generates a transmit interrupt.
Tlustratively k may be selected by the processor 160. This transmit interrupt is received
at the processor 160 which executes an appropriate transmit PID handler subroutine for the
outputted remultiplexed TS TS3. In particular, the processor 160 examines the descriptors
at the head of each queue that contains descriptors pointing to transport packets to be
outputted in TS3. As noted above, two receipt queues contain descriptors pointing to
transport packeis to be outputted in TS3, including one receipt queue associated with the
first adaptor 110 (that receives TS1) and one receipt queue associated with the second

adaptor 110 (that receives TS2). As described below, the processor 160 may allocate

"additional queues containing descriptors pointing to transport packets to be outputted in

TS3. The processor 160 identifies the descriptors pointing to the next j transport packets
to be outputted in TS3. This is achieved by executing the transmit PID handler subroutines
of the set associated with the third adaptor 110 and indexed by the PIDs of the transport

packets in the head of the receipt queues. As noted above, if the transport packet

52

10

15

20

WO 99/37048 PCT/US99/00360

corresponding to a descriptor in a queue examined by the processor 160 is not to be
outputted from the third adaptor 110 (that generated the interrupt), the PID of this transport
packet will index a transmit PID handler subroutine for the third adaptor 110 that does
nothing. If the transport packet corresponding to the descriptor in the queue examined by
the processor 160 is to be outputted from the third adaptor 110 (that generated the
interrupt), the PID of the transport packet will index a pointer to a transmit PID handler
subroutine that will: (1) allocate a transmit descriptor for the transport packet, (2) order the
transmit descriptor in the transmit queue associated with the third adaptor 110 in the correct
order for transmission, (3) assign an actual dispatch time to the allocated descriptor and
transport packet and (4) perform a coarse PCR correction on the transport packet for drift
and latency, if necessary. Illustratively, the processor 160 examines descriptors in (receipt)
queues until j descriptors pointing to transport packets to be outputted in TS3 or from the
third adaptor 110 are identified. The descriptors are examined in order from head 124-3
to tail 124-4. 1f multiple queues with candidate descriptors are available for examination,
the processor 160 may examine the queues in a round-robin fashion, in order of estimated
departure time or some other order that may be appropriate considering the content of the
transport packets to which the descriptors point (as described below).

The DMA control circuit 116 retrieves from the host memory 120 data of a
sequence of j2 1 descriptors of the queue associated with TS3 or the third adaptor 110. The
descriptors are retrieved from the descriptor storage locations 129 of the queue in order
from head pointer 124-3 to tail pointer 124-4. The DMA control circuit 116 also retrieves

from the host memory 120 the transport packets from the transport packet storage locations

33

10

15

20

WO 99/37048 PCT/US99/00360

of the pool 122 to which each such retrieved descriptor points. The DMA control circuit
116 stores such retrieved descriptors and transport packets in the cache 114.

The data link control circuit 112 sequentially retrieves from the cache 114 each
descriptor in the transmit queue, in order from the head pointer 124-3, and the transport
packet in the transport paéket storage location to which the descriptor points. When the
time of the reference clock generator 113 of the third adaptor 110 equafs the time indicated
in the dispatch time field 129-5 of the retrieved descriptor, the data link control circuit 112
transmits the transport packet, to which the descriptor (in the storage location pointed to by
the head pointer 124-3) points, in TS3. The dispatch time is only the approximate transmit
time because each transport packet must be transmitted in alignment with the transport
packet time slot boundaries of TS3. Such boundaries are set with reference to an external
clock not known to the processor 160. Note also, that the PCRs of each transport packet
may be slightly jittered for the same reason. Accordingly, the data link control circuit 112

furthermore finally corrects the PCRs according to the precise transmit time of the transport

packet that contains it. Specifically, the precise transmit time is less than a transport packet

time off from the estimate. The data link control circuit 112 uses a transport time slot
boundary clock, which is previously locked to the time slot boundaries of TS3, to make the

final adjustment to the estimated PCRs (namely, by adding the difference between the

'dispatch time and the actual transmission time to the PCR of the transport packet). Note

that the data link control circuit 112 can use the PCR flag bit of the descriptor to determine
whether or not a PCR is present in the transport packet (and thus whether or not to correct

it).

54

10

15

20

WO 99/37048 PCT/US99/00360

After transmitting a transport packet, the data link control circuit 112 sets the
appropriate status information in field 129-7 of the descriptor that points to the transmitted
transport packet and deallocates the descriptor. The DMA control circuit 116 then writes
this status information into the appropriate descriptor storage location of the transmit queue.

In another manner of operation, the operator already has full knowledge of the
contents of the inputted TSs to be remultiplexed. In this case, the operator simply prepares
the user specification and transmits the user specification from the controller 20 to the
remultiplexer node 100 (or remultiplexer nodes 100 when multiple nodes operate in concert
in a network distributed remultiplexer.IOO). Preferably, different kinds of information
regarding the content of the inputted to-be-remultiplexed TSs (such as the PAT, PMT, etc.)
is nevertheless continuously acquired. This enables instantaneous reporting of the content
to the operator (via the processor 160 and the controller 20), for example, to enable creation
of a modified user specification and to dynamically adjust the remultiplexing according to
the modified user specification without ceasing the input of to-be-remuitiplexed TSs, the
output of the remultiplexed TS or the remultiplexing processing of the remultiplexer 100
noted above.

In addition to the above basic remultiplexing functions, the remultiplexer node 100

can perform more advanced functions. These functions are described individually below.

Dynamic Remultiplexing and Program Specific Information Insertion
As noted above, the operator can use the controller 20 for generating a user
specification specifying programs and ESs to retain or discard, programs or ESs to scramble

or unscrambile (or both), remapping of PIDs, etc. In addition, the processor 160 preferably

55

10

15

20

WO 99/37048 PCT/US99/00360

continuously acquires content information (e.g., data of the PAT, PMT, CAT, NIT, ECM
tables, etc.) This enables simply dynamic, real-time or “on the fly” modification of the user
specification and seamless alteration of the remultiplexing according to the new user
specification. Specifically, the operator can alter the user specification and cause the
remultiplexer 30 to seamlessly switch to remultiplexing according to the new user
specification. Nevertheless, the remultiplexer 30 ensures that each outputted remultiplexed
TS is always a continuous bitstream containing an unbroken sequence or train of transport
packets. Thus, the content of the outputted remultiplexed TS(s) are modified without
introducing discontinuities into the outputted remultiplexed TS(s), i.e., no breaks in the
train of outputted transport packets, or stoppages in the outputted bit stream, occur.

The above seamless modifications can be affected due to the use of a programmable
processor 160 which controls the flow of transport packets between input and output
adaptors 110 or interfaces 140 and 150 and other circuits such as the descrambler/scrambler
170. Consider that choosing to retain or discard a different set of ESs can be effected
simply by the processor 160 adjusting the appropriate PID filter maps and PID handler
subroutines selected by the processor 160 for each PID. Choosing whether to descramble
or scramble certain ESs or programs can be achieved by the processor 160 altering the PID

handler subroutines executed in response to the PIDs assigned to such ESs or programs to

include the appropriate scrambling or descrambling processes (described above and below).

A different selection of output ports for outputting a different combination of outputted
remultiplexed TSs can be achieved by the processor 160 allocating transmit descriptor
queues for the new output ports, deallocating transmit descriptor queues for unneeded

output ports, generating tables 404 of pointers to transmit PID handler subroutines for each

56

10

15

20

25

WO 99/37048

PCT/US99/00360

new output port and discarding each table 404 of pointers to transmit PID handler

subroutines for each deallocated transmit queue. In a like fashion, a different selection of

| input ports may be achieved by the processor 160 allocating and deallocating receipt queues

and generating and discarding tables 402 of pointers to receipt PID handlers for such

allocated and deallocated receipt queues, respectively.

In addition to selecting the correct transport packets for output, the remultiplexer

node 100 illustratively also provides the correct PSI for each outputted remultiplexed TS.

This is achieved as follows. The controller 20 (FIG 2) generates a user specification for the

output TS. Consider the above example where the remultiplexer node 100 remultiplexes

two TSs, namely, TS1 and TS2 to produce a third TS, namely, TS3. Illustratively, Table

1 sets forth the contents of each of TS1 and TS2.

Table 1
TS1 TS2

Program ES PID Program ES PID

A Video A PID(VA) E Video E PID(VE)

A Audio A PID(AA) E Audio E PID(AE)

A Data A PID(DA) PMT Prog. Def. E | PID(e)

PMT Prog. Def. A | PID(a) F Video F PID(VF)

B Video B PID(VB) F Audio F PID(AF)

B Audio B PID(AB) F Data F PID(DF)

PMT Prog. Def. B | PID(b) - PMT Prog. Def. F | PID(f)

C Video C PID(VC) G Video G PID(VG)

C Audio C PID(AC) G Audio 1 G PID(A1G)
|1C Decrypt C PID(ECMC) |G Audio2 G PID(A2G)

PMT Prog. Def. C | PID(c) G Data G PID(DG)

D Video D PID(VD) G Decrypt G PID(ECMGQG)

57

10

15

20

WO 99/37048 PCT/US99/00360
Program ES PID Program ES PID
D Audiol D PID(A1ID) PMT Prog. Def. G | PID(g)
D Audio2D PID(A2D) PAT PAT2 0x0000
D DataD PID(DD)
PMT Prog. Def. D | PID(d)
PAT PAT 1 0x0000

Preferably, the controller 20 programs the processor 160 to extract the information shown
in Table 1 using the acquisition process of receive PID handler subroutines described
above.

Suppose the user specification specifies that only programs A, B, F and G should
be retained and outputted into a remultiplexed outputted TS TS3. The user indicates this
specification at the controlier 20 (FIG 1), e.g., using the keyboard/mouse 27 (FIG 1). The
controller 20 determines whether or not the user specification is valid. In particular, the
controller 20 determines whether or not each output remulitiplexed TS, such as TS3, has
sufficient bandwidth to output all of the specified programs A, B, F and G and associated
PSI (i.e., program definitions a, b, f, g and new, substitute PAT3 to be described below).
Such bit rate information can be obtained from the processor 160 if not already known. For
example, the processor can execute a PID handler subroutine that determines the bit rate
(or transport packet rate) of each program from receipt time stamps assigned to each
transport packet of each program bearing a PCR. As described above, such information is
obtained anyway by the processor 160 for purposes of performing PCR adjustment. If the

user specification is not valid, the controller 20 does not download the user specification.

58

10

15

20

WO 99/37048 PCT/US99/00360

If the specification is valid, the controller 20 downloads the user specification to the
processor 160.

Assume that the user specification can be satisfied by the output bandwidth of TS3.
If not already acquired, the processor 160 acquires the PAT and PMT of the inputted TSs
TS1 and TS2. Based on the information in PAT1 and PAT2, the processor 160 constructs
a substitute PAT3 including only the entries of PAT1 and PAT?2 indicating the PIDs of
program definitions a, b, f and g associated with programs A, B, F and G. Again, this may
be achieved using an appropriate PID handler subroutine for the PIDs of PAT1 and PAT2
and is- preferably executed continuously to ensure that any changes to the programs, as
reflected in PAT1 and PAT?, are incorporated into the substitute PAT3. The processor 160
generates a sequence of transport packets containing this new substitute PAT3 and stores
them in the packet buffer 122. The processor 160 also generates a PAT queue of
descriptors pointing to the transport packets bearing PAT3, which queue preferably is
implemented as a ring 124. The PAT descriptor queue for the PAT3 transport packets
advantageously is dedicated to storing only substitute PAT information. The processor 160

furthermore generates estimated departure times and stores them in the descriptors of the

_ PAT queue that point to the PAT3 transport packets.

The processor 160 can now service the PAT3 descriptor queue in the same way as

" any of the receipt queues in response to a transmit interrupt. That is, when the data link

control circuit 112 transmits k>1 packets and interrupts the processor 160, the processor
160 will extract descriptors from the PAT3 queue as well as the receipt queues.’

Collectively, all queues containing descriptors pointing to to-be-outputted transport packets,

59

10

15

20

WO 99/37048 PCT/US99/00360

for which transmit descriptors in a transmit queue have not yet been allocated are referred
to herein as “connection queues.”

The processor 160 then constructs appropriate filter maps and transfers one filter
map to a first adaptor 110 that receives TS1 and a second filter map to a second adaptor 1 16
that receives TS2, respectively. For example, the first filter map may indicate to extract and
retain transport packets with the PIDs: PID(VA), PID(AA), PID(DA), PID(a), PID(VB),
PID(AB) and PID(b) (as well as possibly other PIDs corresponding to PSI in TS1).
Likewise, the second filter map may indicate to extract and retain transport packets with the
PIDs: PID(VF), PID(AF), PID(DF), PID(f), PID(VG), PID(A1G), PID(A2G), PID(DG),
PID(ECMG) and PID(g) (as well as possibly other PIDs corresponding to PSI in TS2). In
response, the first and second data link control circuits 112 receiving TS1 and TS2, extract
only those transport packets from TS1 and TS2 according to the filter maps provided by the
processor 160. As noted above, the first and second data link control circuits 112 store such
extracted packets in a cache 114 and allocate descriptors therefor. First and second DMA
control circuits 116 periodically write the extracted transport packets and data of descriptors
therefor to the host memory 120. The data of the descriptors written by the first DMA
control circuit 116 is stored in respective descriptor storage locations 129 of a first receive
queue for the first data link control circuit 112 and the data of the descriptors written by the
second DMA control circuit 116 is stored in descriptor storage locations of a second receive
queue for the second data link control circuit 112.

In addition, a third DMA control circuit 116 retrieves descriptors from a transmit
queue associated with TS3, and transport packets corresponding thereto, and stores them

in a cache 114. A third data link control circuit 112 retrieves each descriptor from the

60

10

15

20

WO 99/37048 PCT/US99/00360

cache 114 and transmits them in TS3. The third data link control circuit 112 generates an
interrupt after transmitting k21 transport packets. This causes the processor 160 to access
the table of pointers to transmit PID handler subroutines for the transmit queue associated
with the third data link control circuit 112. In executing the appropriate transmit PID
handler subroutine, the processor 160 allocates unused transmit descriptors of the TS3
transmit queue for, and copies pertinent information in such allocated descriptors from,
descriptors in available connection queues, namely, the first receive queue, the second
receive queue and the PAT3 queue. The transmit descriptors are allocated in the TS3
transmit queue in an order that depends on the estimated dispatch time of the receipt
descriptors.

Note also that any kind of PSI may be dynamically inserted, including new program
definitions, EMMs, ECMs, a CAT or an NIT.

Consider now a situation where a new user specification is generated while

remultiplexing occurs according to a previous user specification. As before, the controller

20 initially verifies that there is sufficient bandwidth to meet the new user specification.

If there is, the new user specification is down loaded to the processor 160. The new user
specification may require that the processor 160 extract different programs and ESs, map

PIDs differently, or generate: (a) new PSI, (b) transport packets bearing the new PSI, and

‘ (c) descriptors pointing to the transport packets bearing the new PSL. In the case of

modifying the programs or ESs contained in TS3, the processor 160 modifies the PID filter
maps to retain the to-be-retained transport packets and to discard the to-be-discarded
transport packets according to the new user specification. The new filter maps are

transferred to the respective caches 114 which dynamically and immediately switch to

61

10

15

20

WO 99/37048 PCT/US99/00360

extracting transport packets according to the new user specification. The processor 160
also selects appropriate receipt PID handler subroutines for the new to-be-retained transport
packets by modifying the pointers of the receipt PID handler subroutine pointer tables 402
associated with the PIDs of the new, to-be-retained transport packets. Modifications may
also be made to pointers of the receipt PID handler subroutine pointer tables 402 indexed
by PIDs of transport packets now to-be-discarded. In the case of a new PID remapping, the
processor 160 selects appropriate subroutines to perform the new PID remapping.

Such changes may require the generation of new PSI, e.g., a new PAT. The

processor 160 selects an appropriate PID handler subroutine for generating the new PSI.

For example, in the case of a new PAT, the PID handler subroutines may be triggered by
the PIDs of the PATs of TS1 and TS2. The processor 160 generates new PSI and inserts
the new PSI into transport packets. Descriptors in a respective PSI queue are allocated for
such new PSI transport packets. The processor 160 stops servicing (i.e., refreshing and
transferring transport packets from) any PSI descriptor queues pointing to transport packets
containing stale PSI and instead services the new PSI descriptor queues.

As each change, i.e., each newly selected PID handler subroutine, each PSI insertion
modification or each new PID filter map, is available, the appropriate data link control
circuit 112 or processor 160 seamlessly changes its operation. Until such change is
effected, the data link control circuit 112 or processor 160 continues to operate under the
previous user specification. Some care must be taken in ordering when each change occurs
so that the outputted remultiplexed TS is always MPEG-2 compliant. For example, any
changes to PID mapping, PID filtering, programs, ESs, ECMs, etc., in the TS, which impact

the PMT or PAT are preferably delayed until a new version of the PMT (or specific

62

10

15

20

WO 99/37048 4 PCT/US99/00360

program definitions thereof) and/or PAT can be outputted in the TS and an indication for
switching over to the new PMT, program definition or PAT is indicated in the TS.
Likewise, if EMMs are included or dropped for a- conditional access system, the
introduction of such EMMs is delayed until a new version of the CAT can be transmitted
in the TS. Additional judicious ordering of changes may be desirable for internal
processing management of resources, such as storing a pointer to a receipt PID handler
subroutine in the appropriate receipt PID handler subroutine pointer table entry indexed by
a PID of a transport packet to-be retained (that was previously discarded) prior to altering
the PID filter map of the respective adaptor 110 for retaining transport packets with this
PID, etc.

The following is an example of modifying the remultiplexing according to a new
user specification. Suppose the user provides a new user specification indicating that
programs B and F should be dropped and instead, programs C and D should be retained.
In response, the controller 20 first determines if there is sufficient bandwidth in the
outputted remultiplexed TS TS3 to accommodate all of the new program data, and new PSI
that must be generated therefor, in modifying the remultiplexed TS TS3 according to the
new user specification. Assuming that there is, the new user specification is downloaded
to the remultiplexer node 100. The processor 160 modifies the PID filter map in the first
adaptor 110 so as to discard transport packets with PIDs PID(VB), PID(AB), PID(b) and
retain transport packets with PIDs PID(VC), PID(AC), PID(ECMC), PID(c), PID(VD),
PID(A1D), PID(A2D), PID(DD) and PID(d). Likewise, the processor 160 modifies the
PID filter map in the second adaptor 110 so as to discard transport packets with PIDs

PID(VF), PID(AF), PID(DF), and PID(f). The processor 160 selects PID handler

63

10

15

20

WO 99/37048 PCT/US99/00360

subroutines for the PIDs PID(VC), PID(AC), PID(ECMC), PID(c), PID(VD), PID(A1D),
PID(A2D), PID(DD) and PID(d), including program definition update processes for each
of PIDs PID(c) and PID(d), a control word update process for PID(ECMC), a descrambling
control word information insertion process for each of the scrambled ESs of program C,
e.g., PID(VC). The processor 160 also generates a different substitute PAT3 including the
program definitions a, b, ¢, d, and g, e.g, in the course of executing PID handier
subroutines for PID(0) for each of the first and second adaptors 110.

Now consider the case where another new user specification is provided indicating
that the VA video ES of program A should be scrambled. Again, the controller 20 first
determines if there is sufficient bandwidth in TS3 to accommodate ECM bearing transport
packets for VA and new program definitions for program A. Assuming that there is, the
new user specification is downloaded to the remultiplexer node 100. The processor 160
allocates a queue for storing descriptors pointing to transport packets containing the ECMs
of VA. The processor 160 selects an appropriate PID handler subroutine for PID(VA)
including inserting a scrambling control word into the descriptors pointing to transport
packets containing VA. The processor 160 also generates transport packets containing the
control words as ECMs for VA and allocates descriptors pointing to these transport packets.

This may be achieved using a timer driven interrupt handler subroutine. Alternatively,

" additional hardware (nor shown) or software executed by the processor 160 generates

control words periodically and interrupts the processor 160 when such control words are
ready. The processor 160 responds to such interrupts by placing an available control word
in one or more transport packets, allocating ECM descriptors of an ECM queue for such

transport packets, and loading the new control word into the appropriate control word table.

64

10

15

20

WO 99/37048 PCT/US99/00360

The processor 160 furthermore selects a receive PID handler subroutine for PID(a)
including a process that extracts the information in the program definition a and adds

information regarding ECMA (e.g., PID(ECMA), the ES that it encrypts, etc.).

Scrambling/Descrambling Control

One 'problem associated with scrambling and descrambling is the selection of the
correct control word or key for each transport packet. That is, scrambled transport packet
data may be scrambled with a PID specific control word or a control word specific to a
group of PIDs. A rotating control word scheme may be used where the control word
changes from time to time. In short, there may be a large number of control words (e.g.,
keys) associated with each TS and control words are periodically changed. In the case of
descrambling, a mechanism must be provided for continuously receiving control words for
each to-be-descrambled ES or group of ESs and for selecting the appropriate control word
at each moment of time. In the case of scrambling, a mechanism must be provided for
selecting the correct control word for scrambling an ES or group of ESs and for inserting
the control word used for scrambling the ESs into the outputted remultiplexed TS
sufficiently in advance of any scrambled ES data thereby formed.

The descriptors and their ordering within the receipt and transmit queues can be
used to simplify the scrambling and descrambling of TSs: In pﬁrticular, each receipt
descriptor has a field 129-9 in which information pertinent to scrambling or descrambling
can be stored, such as the control word to be used in scrambling the transport packet or a
pointer to the appropriate control word table containing control words for use in scrambling

or descrambling the transport packet.

65

10

15

20

WO 99/37048 PCT/US99/00360

Consider first the steps performed in descrambling a transport packet. The TS
containing transport packets to be descrambled contains ECM (ES specific conditional
access) and EMM (conditional access specific to a whole group of ESs) bearing transport
packets. EMM:s are carried in transport packets labeled with PIDs unique to the group of
ESs to which they correspond and ECMs are carried in transport packets labeled with PIDs
unique to the specific ES to which each ECM corresponds. The PIDs of the EMMs can be
correlated to the specific groups of ESs to which they correspond by reference to the CAT.
The PIDs of the ECMs can be correlated to each specific ES to which they correspond by
reference to the PMT. The processor 160 selects PID handler subroutines for:

(1) recovering each CAT and PMT transmitted in the TS and for identifying

which version of the CAT or PMT is currently being used,

2) by reference to the PMT, recovering a table of ECMs indexed by the PIDs

of the transport packets carrying the ESs to which they correspond.

Next, the processor 160 defines a sequence of processing steps to be performed on
each transport packet and descriptor. That is, the processor 160 defines the specific order
in which the receipt adaptor 110 data link control circuit 112, the (optional) receipt adaptor
110 descrambler 115, the receipt adaptor 110 DMA control circuit 116, the (optional)

descrambler 170 and the processor 160 can process a receipt descriptor or packet to which

a receipt descriptor points. To this end, the processor 160 may transfer appropriate control

information to each of the devices 112, 115 and 116 for causing them to process the
transport packet and descriptor that points thereto in the specific order of the defined

sequence of processing steps as described below.

66

10

15

20

WO 99/37048 PCT/US99/00360

If the on adaptor 110 descrambler 115 is used, the order of processing in the
sequence is defined as follows. The data link control circuit 112 of an adaptor 110 receives
transport packets and allocates receipt descriptors for selected ones of those transport
packets not discarded as per the PID filter map described above. After storing each retained
transport packet in the cache 114, the data link control circuit 112 illustratively sets the
status bit(s) 129-7 in the descriptor pointing to the transport packet to indicate that the
transport packet may now be processed by the next device according to the order of the
defined sequence of processing steps.

The descrambler 1135 periodically examines the cache 114 for the next one or more
descriptors for which the status bit(s) 129-7 are set to indicate that the descrambler 115 has
permission to modify the transport packet. Illustratively, the descrambler 115 accesses the
cache 114 afier the descrambler 115 has processed m=>1 descriptors. The descrambler 115
accesses each descriptor of the cache 114 sequentially from the descriptor previously
accessed by the descrambler 115 until m21 descriptors are accessed or until a descriptor is
reached having the status bit(s) 129-7 set to indicate that processing of a previous step is
being performed on the descriptor and transport packet to which it points according to the
order of the defined sequence of processing steps.

In processing descriptors and transport packets, the descrambler 115 uses the PID
of the transport packet, to which the currently examined descriptor points, to index a
descrambling map located in the cache 114. Illustratively, the processor 160 perniodically
updates the descrambling map in the cache 114 as described below. The location of the
descrambling map is provided by a base address located in the descriptor ‘ﬁeld 129-9.

Ilustratively, the processor 160 loads the base address of the descrambling map into the

67

10

15

20

WO 99/37048 PCT/US99/00360

fields 129-9 of each descriptor when allocating the receipt descriptor queues. The indexed
entry of the descrambling map indicates whether or not the transport packet is scrambled
and, if scrambled, one or more control words that can be used to descramble the transpoﬁ
packet. The indexed entry of the descrambling map can contain the control words
corresponding to the PID of the transport packet or a pointer to a memory location in which
the respective control word is stored. If the indexed entry of the descrambling map
indicates that the transport packet to which the accessed descriptor points is not to be
descrambled, the descrambler 115 simply sets the status bit(s) 129-7 of the descriptor to
indicate that the next processing step, according to the order of the defined sequence of
processing steps, may be performed on the descriptor and transport packet to which it
points.

If the indexed entry of the descrambling map indicates that the transport packet is
to be descrambled, the descrambler 115 obtains the control word corresponding to the PID
of the transport packet and descrambles the transport packet data using the control word.
Note that a typical descrambling scheme uses rotating (i.e., odd and even) control words
as described above. The correct odd or even control word to use in descrambling a
transport packet is indicated by control bits in the transport packet, such as the

transport_scrambling_control bits. The descrambler 115 uses these bits, as well as the PID

of the transport packet, in indexing the correct control word. That is, the map constructed

and maintained by the processor 160 is indexed by both the PID and the odd/even
indicator(s). The descrambler 115 then stores the descrambled transport packet data in the
transport packet storage location pointed to by the currently examined descriptor thereby

overwriting the pre-descrambling data of the transport packet. The descrambler 115 then

68

10

15

20

WO 99/37048 PCT/US99/00360

sets the status bit(s) 129-7 of the descriptor to indicate that the next processing step

according to the order of the defined sequence of processing steps may be performed on the
descriptor and transport packet to which it points.

The DMA control circuit 116 periodically writes transport packet data and data of
descriptors that point thereto from the cache 114 to respective storage locations 122 and
129 of the host memory 130. In so doing, the DMA control circuit 116 periodically
examines a sequence of one or more descriptors in the cache 114 that follow (in receipt
queue order) the last descriptor processed by the DMA control circuit 116. If the status
bit(s) 129-7 of an examined descriptor indicates that processing by the DMA control circuit
116 may be performed on the examined descriptor, the DMA control circuit 116 sets an
appropriate status bit(s) 129-7 in the descriptor indicating that the next step of processing,
according to the order of the defined sequence of processing steps, may be performed on
the descriptor and the transport packet to which it points. The DMA control circuit 116
then writes the data of the descriptor, and of the transport packet to which it points, to the
host memory 130. However, if the status bit(s) 129-7 are set to indicate that a processing
step that precedes the processing performed by the DMA control circuit 116 is still being
performed on the descriptor, the DMA control circuit 116 refrains from processing the

descriptor and transport packet to which it points. Illustratively, when enabled, the DMA

" control circuit 116 examines descriptors until the DMA control circuit 116 writes data of

a sequence of i 1 descriptors, and transport packets to which such descriptors point, or a
descriptor is encountered having status bit(s) 129-7 indicating that a prior processing step,

according to the order of the defined sequence of processing steps, is still being performed

69

10

15

20

WO 99/37048 PCT/US99/00360

on the descriptor. Each time the DMA control circuit 116 transfers i> 1 transport packets,
the DMA control circuit issues an interrupt.

The processor 160 responds to the interrupt issued by, for example, the DMA
control circuit 116, by executing the appropriate receipt PID handler spbroutine. The
processor 160 examines one or more descriptors of the receipt queue, corresponding to the
adaptor 110 from which the interrupt was received, starting from the last descriptor
processed by the processor 160. Illustratively, the processor 160 only executes the
appropriate receipt PID handler subroutine for those descriptors having a status bit(s) 129-7
set indicating that processing by the processor 160 may be performed on the descriptor.
Each time the processor 160 is interrupted, the processor 160 illustratively processes
descriptors, and transport packets to which they point, until PID handler subroutines are
executed for i>1 transport packets or until a descriptor is encountered for which the
appropriate status bit(s) 129-7 is set to indicate that processing of a prior processing step
(according to the order of the defined sequence of processing steps) is still being performed
on the descriptor.

In the course of executing the appropriate receipt PID handler subroutines, the
processor 160 recovers all control words for all ESs and updates the descrambling and
control word tables or maps used by the descrambler 115 (or 170 as described below). In
a rotating control word scheme, the processor 160 maintains multiple (i.e., odd and even)
keys for each PID in the control word table or map. The processor 160 may also perform
processing for enabling subsequent scrambling of descrambled transport packets (described
below). After processing the receipt.descriptors, the processor 160 deallocates them by

setting their status bit(s) 129-7 to indicate that the descriptor is invalid (and thus the data

70

10

15

20

WO 99/37048 PCT/US99/00360

link control circuit 112 is the next device to process the descriptors), erasing or resetting
selected fields of the descriptor and advancing the head pointer 124-3 to the next descriptor
storage location 129.

Consider now the case where the descrambler 115 is not proyided on the adaptor
110 or not used. Instead, a descrambler 170 resident on the bus 130 is used. A very similar
procedure is carried out as before. However, in this scenario, the order of processing steps
of the defined sequence is changed so that the DMA control circuit 116 processes the
descriptors (and their corresponding transport packets) after the data link control circuit and
before the descrambler and the descrambler 170 processes the descriptors (and their
corfesponding transport packets) after the DMA control circuit 116 but before the processor
160. Thus, after the data link control circuit 112 allocates a descriptor for a transport packet
and sets the appropriate status bit(s) 129-7 to enable the next step of processing to be
performed thereon, the DMA control circuit 116 processes the descriptor and transport
packet to which it points. As noted above, the DMA control circuit 116, sets the status
bit(s) 129-7 to indicate that the next step of processing may be performed on the descriptor
and writes the transport packet and descriptor to the host memory 130.

The descrambler 170 periodically examines the descriptors in the receipt queue to

identify descriptors that have the status bit(s) 129-7 set to indicate that descrambling

A processing may be performed on descriptors and transport packets to which they point

(according to the order of the defined sequence of processing steps). The descrambler 170
processes such identified transport packets in a similar fashion as discussed above for the
descrambler 115. After processing the transport packets, the descrambler 170 sets one or

more status bit(s) 129-7 to indicate that the next processing step (according to the order of

71

10

15

20

WO 99/37048 PCT/US99/00360

the defined sequence of processing steps) can now be performed on the descriptor and
transport packet to which it points.

The processor 160 performs the above noted processing in response to the interrupt
issued by the DMA control circuit 116, including executing the appropriate receipt PID
handler subroutine. Preferably, the queue length of the receipt queue associated with the
adaptor 110 that interrupted the processor 160 is sufficiently long relative to the processing
time of the descrambler 170 such that the processor 160 examines and processes descriptors
that the descrambler 170 had already completed processing. In other words, the processor
160 and descrambler 170 preferably do not attempt to access the same descriptors
simultaneously. Rather, the processor 160 begins to process descriptors at a different point
in the receipt queue as the descrambler 170.

Consider now the processing associated with scrambling. As with descrambling
processing, status bit(s) 129-7 in the descriptor are used to order the processing steps
performed on each descriptor and transport packet to which such descriptors point
according to an order of a defined sequence of processing steps. Unlike descrambling,
scrambling is preferably performed after the processor 160 has allocated transmit
descriptors to the to-be-scrambled transport packets. As such, the control word field 129-9
can be used in one of two ways. As in descrambling, an address to the base of a scrambling
map may be placed in the control word descriptor field 129-9. Preferably, however,
because scrambling occurs after the processor 160 processes the descriptors in the transmit
queue, the correct control word, itself, is placed into the control word desgriptor field 129-9.

Consider first the scrambling processing wherein scrambling is performed by an on

transmit adaptor 110 scrambler 115. The processor 160 obtains ECM transport packets

72

10

15

20

WO 99/37048 PCT/US99/00360

containing control words that are preferably encrypted. These ECM transport packets are
enqueued in a respective corresponding connection queue and are scheduled for output at
the correct time. That is, the ECM transport packets are scheduled for injection into the
outputted TS sufficiently in advance of the transport packets that they descramble to enable
a decoder to recover the control word prior to receiving the transport packets that it
descrambles. |

At an appropriate time after transmitting the ECM transport packets containing a
control word, the processor 160 changes the control word table to cause data to be
encrypted using a new key corresponding to the recently transmitted control word. As
transport packets are transmitted from an output adaptor, the processor 160 executes
transmit PID handler subroutines associated with the PIDs of the transport packets pointed
to by descriptors in examined connection queues. For each such to-be-scrambled transport
packet, the transmit PID handler subroutine includes a process for inserting control word
information into the descriptor associated with the transport packet. The control word
information may simply be the base address of a scrambling map to be used in identifying
the control word for use in scrambling the transport packet. However, the control word
information can also be the correct control word to be used in scrambling the transport

packet. The processor 160 may also toggle bits in the transport packet, such as the

' transport_scrambling_control bits, to indicate which of the most recently transmitted

control words should be used to decrypt or descramble the transport packet at the decoder.
The processor 160 furthermore illustratively sets one or more status bits 129-7 of the newly

allocated transmit descriptor to indicate that the next processing step (according to the order

73

10

15

20

WO 99/37048 PCT/US99/00360

of the defined sequence of processing steps) should be performed on the transmit descriptor
and the transport packet to which it points.

The DMA control circuit 116 of the transmit adaptor 110 periodically retrieves
descriptor data from the fransmit queue and transport packets to which such descriptors
point. In so doing, the DMA control circuit 116 examines the descriptors in the transmit
queue following the last descriptor for which the DMA control circuit 116 transferred
descriptor data to the cache 114. The DMA control circuit 116 only transfers data of
transmit descriptors for which the status bit(s) 129-7 are set to indicate that processing by
the DMA control circuit 116 may now be performed (according to the order of the defined
sequence of processing steps). For example, the DMA control circuit 116 may examine
transmit descriptors until a certain number k21 of transmit descriptors are identified which
the DMA contro] circuit 116 has permission to process or until a descriptor is identified
having status bits 129-7 set to indicate that a previous processing step is still being
performed on the transmit descriptor and transport packet to which it points. After
transferring to the cache 114 data of such transmit descriptors, and the transport packets to
which such transmit descriptors point, the DMA control circuit 116 sets the status bit(s)
129-7 of such transferred transmit descriptors to indicate that the next processing step

(according to the order of the defined sequence of processing steps) may be performed on

the transmit descriptors, and the transport packets to which they point.

Next, the scrambler 115 periodically examines the descriptors in the cache 114 for
a sequence of one or more descriptors, and transport packets to which they point, to
process. The scrambler 115 only processes those accessed descriptors having one or more

status bits 129-7 set to indicate that the scrambling processing step may be performed

74

10

15

20

WO 99/37048 PCT/US99/00360

thereon (according to the order of the defined sequence of processing steps). The scrambler
115 accesses the control word information field 129-9 and uses the information therein to
scramble each to-be-scrambled transport packet. As noted above, the control word
information can be used one of two ways. If the control word information is a base address
to a scrambling map, the scrambler 115 uses the base address and PID information of the
transport packet to index the scrambling map. The indexed entry of the scrambling map
indicates whether or not the transport packet is to be scrambled, and if so, a control word
to use in scrambling the transport packet. Alternatively, the control word information in
the field 129-9, itself, indicates whether or not the transport packet is to be scrambled, and
if s0, the control word to use in scrambling the transport packet. If the transport packet of
the processed descriptor is not to be scrambled, the scrambler 115 simply sets the
appropriate status bit(s) 129-7 to indicate that the next processing step (according to the
order of the defined secjuence of processing steps) may now be performed on the transmit
descriptor and the transport packet to which it points. If the transport packet of the
processed descriptor is to be scrambled, the scrambler scrambles the transport packet data
first, stores the transport packet in the cache in place of the unscrambled transport packet
and then sets the appropriate status bit(s) 129-7.

The data link control circuit 112 periodically examines the transmit descriptors in
the cache 114 for transmit descriptors having one or more status bits 129-7 set to indicate
that processing by the data link control circuit 112 may be performed thereon. For such
transmit descriptors, the data link control circuit 112 transmits the transport packets to
which such descriptors point, at approximately the actual dispatch time indicated therein.

The data link control circuit 112 then deallocates the descriptors (and sets the status bits

75

10

15

20

WO 99/37048 PCT/US99/00360

129-7 to invalid). Illustratively, each time the data link control circuit 112 transmits a
sequence of k>1 descriptors, the data link control circuit 112 generates a transmit interrupt
for receipt by the processor 160.

In the case that the scrambler 115 is not present or is not used, the scrambler 170
illustratively is used instead. The sequence of processing steps set forth above is changed
so that the scrambler 170 processes each transmit descriptor and transport packet to which
it points after the processor 160 and before the DMA control circuit 116 and the DMA
control circuit 116 processes each transmit descriptor the transport packet to which it points

after the scrambler 170 but before the data link control circuit 110.

Bandwidth Optimization
As noted above, often a program bearing. TS has null transport péckets inserted
therein. Such null transport packets are present because excess bandwidth typically must
be allocated for each program by the program encoder. This is because the amount of
encoded data produced for each ES produced from moment to moment can only be
controlled so much. Absent this “overhead bandwidth” encoded ES data would frequently
exceed the amount of bandwidth allocated thereto causing encoded ES data to be omitted

from the TS. Altematively, an ES encoder, especially a video ES encoder, might not

“always have data available to output when a transport packet time slot occurs. For

example, a particular picture may take an unexpectedly longer time to encode than
previously anticipated, thereby causing a delay in production of encoded video ES data.

Such time slots are filled with null transport packets.

76

10

15

20

WO 99/37048 PCT/US99/00360

Although the presence of null transport packets must be tolerated in the
remultiplexer node 100, it is desirable to reduce the number of such bandwidth wasting null
transport packets. However, in so doing, the bit rate of each program should not be varied
and the end-to-end delay should remain constant for such programs. According to one
embodiment, a technique is employed whereby null transport packets are replaced with
other to-be-remultiplexed transport packet data, if such other transport packet data is
available. This is achieved as follows.

First consider that the processor 160 can have multiple connection queues on hand
containing descriptors of to-be-scheduled transport packets, i.e., descriptors in receipt
queues, PSI queues, other data queues, etc., not yet transferred to a transmit queue. As
noted above, these descriptors may point to transport packets associated with a received
incoming TS or to other program related streams generated by the processor 160, such as
a PAT stream, a PMT stream, an EMM stream, an ECM stream, a NIT stream, a CAT
stream, etc. However, other kinds of to-be-scheduled transport packets and descriptors 129
therefor may be on hand such as non-time sensitive, “bursty” or “best effort” private data
bearing transport packets. For example, such extra transport packets may contain
transactional computer data, e.g., such as data communicated between a web browser and
a web server. (The remultiplexer node 100 may be a servef, a terminal or simply an
intermediate node in a communication system connected to the “internet.” Such a
connection to the internet can be achieved using a modem, the adaptor 140 or 150, etc.)
Such data does not have a constant end-to-end delay requirement. Rather, such data may

be transmitted in bursts whenever there is bandwidth available.

77

10

15

20

WO 99/37048 PCT/US99/00360

The processor 160 first causes each null transport packet to be discarded. This can
be achieved by the processor 160 using a receive PID handler subroutine which discards
all null transport packets. This technique illustratively is used when the null transport
packets are received from a device other than the adaptor 110, such as the interface 140 or
150. Alternatively, if the null transport packets are received from the adaptor 110, the
processor 160 may provide a PID filter map to the data link control circuit 112 which
causes each null transport packet to be discarded. Next, according to the receive PID
handler subroutine, each incoming transport packet that is to be outputted in the TS is
assigned an estimated departure time as a function of the receipt time of the transport packet
(recorded in the descriptor therefor) and an internal buffering delay within the remultiplexer
node 100. In each respective connection queue containing to-be-scheduled transport
packets, the assigned departure times might not be successive transport packet transmission
times (corresponding to adjacent time slots) of the outputted TS. Rather, two successive
descriptors for transport packets to be outputted in the same output TS may have estimated
departure times that are separated by one or more transport packet transmission times (or
time slots) of the outputted remultiplexed TS in which the transport packets are to be
transmitted.

Preferably, descriptors pointing to program data bearing transport packets,

"descriptors pointing to PSI, ECM or EMM bearing transport packets and descriptors

pointing to bursty data are each maintained in mutually separate connection queues. In
implementation, connection queues are each assigned a servicing priority depending on the
type of data in the transport packets to which the descriptors enqueued therein point.

Preferably, program data received from outside the remultiplexer node (e.g., via a receipt

78

10

15

20

WO 99/37048 PCT /US99/00360

adaptor 110 or an interface 140 or 150) is assigned the highest priority. Connection queues
storing PSI, ECM or EMM streams generated by the remultiplexer node 100 may'éilso be
assigned the same priority. Finally, connection queues with descriptors pointing to
transport packets containing bursty data with no specific continuity, propagation delay or
bit rate requirement, are assigned the lowest priority. In addi;ion, unlike program, PSI,
ECM and EMM data, no estimated departure time is assigned to, or recorded in the
descriptor of, transport packets bearing bursty data.

In executing transmit PID handler subroutines, the processor 160 transfers
descriptors associated with to-be-scheduled transport packets from their respective
connection queues to a transmit queue. In so doing, the processor 160 preferably services
(i.e., examines the descriptors in) each connection queue of a given priority before resorting
to servicing connection queues of a lower priority. In examining descriptors, the processor
160 determines whether or not any examined descriptors of the high priority connection
queues (i.e., containing descriptors of transport packets bearing program PSI, ECM or
EMM data) point to transport packets that must be transmitted at the next actual dispatch
time, based on the estimated departure time assigned to such transport packets. If so, the
processor 160 allocates a transmit descriptor for each such transport packet, copies pertinent

information from the connection queue descriptor into the allocated transmit queue

" descriptor and assigns the appropriate dispatch times to each transport packet for which a

transmit descriptor is allocated. As noted above, occasionally two or more transport
packets contend for the same actual departure time (i.c., the same transport packet time slot

of the outputted remultiplexed TS) in which case, a sequence of transport packets are

79

10

15

20

WO 99/37048 PCT/US99/00360

assigned to consecutive time slots and actual departure times. PCR adjustment for such
transport packets is performed, if necessary.

At other times, when th;e pfoc&ssor 160 services the connection queues, no transport
packet of the higher priority connection queues has an estimated departure time that would
cause the processor 160 to assign that transport packet to the next available time slot and
actual dispatch time of the outputted remultiplexed TS. Ordinarily, this would create a
vacant time slot of the outputted remultiplexed TS. Preferably, however, in this situation,
the processor 160 services the lower priority connection queues. The processor 160
examines the lower priority connection queues (in order from the head pointer 124-3),
selectively assigns a transmit descriptor to each of a sequence of one or more transport
packets, to which such examined descriptors point, and copies pertinent information of the
examined descriptors to the allocated transmit descriptors. The processor 160 selectively
assigns one of the (otherwise) vacant time slots to each transport packet to which such
examined descriptors point and stores the actual dispatch time associated with the assigned
time slots in the corresponding allocated transmit descriptors.

Occasionally, no transport packets, pointed to by descriptors in a high or low
priority connection queue, can be assigned to a time slot of the outputted remultiplexed TS.
This can occur because no high priority transport packets have estimated departure times
corresponding to the actual dispatch time of the time slot and no bursty data bearing
transport packets are buffered pending transmission at the remultiplexer node 100.
Alternatively, bursty data bearing transport packets are buffered, but the processor 160
chooses not to assign transmit descriptors therefor at this particular moment of time for

reasons discussed below. In such a case, the descriptors in the transmit queue will have

80

10

15

20

WO 99/37048 PCT/US99/00360

actual transmit times corresponding to a non-continuous sequence of transport packet time
slots of the outputted remultiplexed TS. When the data link control circuit 112 of the
transmit adaptor 110 encounters such a discontinuity, the data link céntrol circuit 112
transmits a null transport packet at each vacant time slot to which no transport packet is
assigned (by virtue of the transmit descriptor actual dispatch time). For example, assume
that the dispatch. times of two successive descriptors in the transmit queue associated with
first and second transport packets indicate that the first transport packet is to be transmitted
at a first transport packet time slot and that the second transport packet is to be transmitted
at a sixth transport packet time slot. The data link control circuit 112 transmits the first
transport packet at the first transport packet time slot. At each of the second, third, fourth,
and fifth transport packet time slots, the data link control circuit 112 automatically
transmits a null transport packet. At the sixth transport packet time slot, the data link
control circuit 112 transmits the second transport packet.

Note that bursty or best effort data typically does not have a rigorous receive buffer
constraint. That is, most bursty or best effort data receivers and receiver applications
specify no maximum buffer size, data fill rate, etc. Instead, a transport protocol, such as
transmit control protocol (TCP) may be employed whereby when a receiver buffer fills, the

receiver simply discards subsequently received data. The receiver does not acknowledge

‘receiving the discarded packets and the source retransmits the packets bearing the data not

acknowledged as received. This effectively throttles the effective data transmission rate to
the receiver. While such a throttling technique might effectively achieve the correct data
transmission rate to the receiver it has two problems. First, the network must support two-

way communication. Only a fraction of all cable television networks and no direct

81

10

15

20

WO 99/37048 PCT/US99/00360

broadcast satellite networks support two-way communication between the transmitter and
receiver (absent a telephpne return path). In any event, where two-way communication is
supported, the return path from the receiver to the transmitter has substantially less
bandwidth than the forward path from the transmitter to the receiver and often must be
shared amongst multiple receivers. Thus, an aggressive use of TCP as a throttling
mechanism utilizes a large fraction of the return path which must also be used for other
receiver to transmitter communications. Moreover, it is undesirable to waste bandwidth of
the forward path for transmitting transport packets that are discarded.

Preferably, the insertion of bursty or best effort data should not cause such buffers
to overflow. Illustratively, the PID handler subroutine(s) can control the rate of inserting
bursty data to achieve some average rate, so as not to exceed some peak rate or even to
simply to prevent receiver buffer overflow assuming a certain (or typical) receiver buffer
occupancy and pendency of data therein. Thus, even at fimes when the processor 160 has
bursty or best effort data available for insertion into one or more vacant transport packet
time slots (and no other data is available for insertion therein), the processor 160 may
choose to insert bursty data into only some vacant transport packet time slots, choose to
insert bursty data into alternate or spaced apart transport packet time slots or choose not to
insert bursty data into any vacant transport packet time slots, so as to regulate the
transmission of data to, or to prevent overflow of, an assumed receiver bursty data buffer.
In addition, transport packets destined to multiple different receivers may themselves be
interleaved, regardless of when they were generated, to maintain some data transmission

rate to the receiver.

82

10

15

20

WO 99/37048 - PCT/US99/00360

In any event, the remultiplexer node 100 provides a simple method for optimizing
the bandwidth of TSs. All null transport packets in incoming TSs are discarded. If
transport packets are available, they are inserted into the time slots that normally would
have been allocated to the discarded null transport packets. If transport packets are not
available, gaps are left for such time slots by the normal dispatch time assignment process.
If no transport packet has a dispatch time indicating that it should be transmitted at the next
available time slot of the outputted remultiplexed TS, the data link control circuit 112
automatically inserts a null transport packet into such a time slot.

The benefit of such a bandwidth optimization scheme is two-fold. First, a
bandwidth gain is achieved in terms of the outputted remultiplexed TS. Bandwidth
normally wasted on null transport packets is now used for transmitting information.
Second, best effort or bursty data can be outputted in the TS without specifically allocating
bandwidth (or by allocating much less bandwidth) therefor. For example, suppose an
outputted remultiplexed TS has a bandwidth of 20 Mbits/sec. Four program bearing TSs
of 5 Mbits/sec each are to be remultiplexed and outputted onto the 20 Mbits/sec
remultiplexed TS. However, as much as 5% of the bandwidth of each of the four program
bearing TSs may be allocated to null packets. As such, it is possible that up to 1 Mbit/sec

may be (nominally) available for communicating best effort or bursty data bearing transport

" packets, albeit without any, or with limited, guarantees of constancy of end-to-end delay.

Re-timing Un-timed Data
As noted above, to-be-remultiplexed program data may be received via the

asynchronous interface 140. This presents a problem because the interface 140, and the

83

10

15

20

WO 99/37048 PCT/US99/00360

communication link to which it attaches, are not designed to transmit data at any specific
time and tend to introduce a variable end-to-end delay into communicated data. In
comparison, an assumption can be made for program data received at the remultiplexer
node 100 via a synchronous communication link (such as is attached to a receiving adaptor
110) that all received transport packets thereof will be outputted without jitter. This is
because all such packets incur the same delay at the remultiplexer node 100 (namely, the
internal buffering delay), or, if they do not (as a result of .time slot contention, as described
above), the additional delay is known and the PCRs are adjusted to remove any jitter
introduced by such additional delays. In addition, the PCRs are furthermore corrected for
drift of the internal clock mechanism relative to the system time clock of each program and
for the misalignment between scheduled output time of PCRs and actual output time
relative to the slot boundaries of the outputted TS. However, in the case of transport
packets received from the interface 140, the transport packets are received at the
remultiplexer node 100 at a variable bit rate and at non-constant, jittered times. Thus, if the
actual receipt times of the transport packet is used as a basis for estimating the departure
of the transport packet, the jitter will remain. Jittered PCRs not only cause decoding and
presentation discontinuities at the decoder, they cause buffer overflow and underflow. This

is because the bit rate of each program is carefully regulaied assuming that the data will be

" removed from the decoder buffer for decoding and presentation relative to the system time

clock of the program.
According to an embodiment, these problems are overcome as follows. The
processor 160 identifies the PCRs of each program of the received TS. Using the PCRs,

the processor 160 determines the piece-wise transport packet rate of transport packets of

84

10

15

20

WO 99/37048 PCT/US99/00360

each program between pairs of PCRs. Given the transport packet rate of each (interleaved)
sequence of transport packets of each program, the processor 160 can assign estimated
departure times based on the times at which each transport packet should have been
received.

Tllustratively, as the interface 140 receives program data, the received program data
is transferred from the interface 140 to the packet buffers 122 of the host memory 120.
Specifically, the interface 140 stores received program data in some form of a receipt
queue. Preferably, the received program data is in transport packets.

The interface 140 periodically interrupts the processor 160 when it receives data.
The interface 140 may interrupt the processor 160 each time it receives any amount of data
or may interrupt the processor 160 after receiving a certain amount of data. As with the
adaptor 110, a receipt PID handler subroutine pointer table 402 is specially devised for the
interface 140. The subroutines pointed to by the pointers may be similar in many ways to
the subroutines pointed to by the pointers in the receipt PID handler subroutine pointer
table associated with a receive adaptor 110. However, the subroutines are different in at
least the following ways. First, the asynchronous interface 140 might not allocate
descriptors having the format shown in FIG 2 to received program data and might not
receive program data in transport packets. For example, the program data may be PES
packet data or PS pack data. In such a case, the subroutines executed by the processor 160
for PIDs of retained transport packets illustratively include a process for inserting program
data into transport packets. In addition, a process may be provided for allocating a receipt
descriptor of a queue assigned to the adaptor 140 to each received transport packet. The

processor 160 stores in the pointer field 129-4 of each allocated descriptor a pointer to the

85

10

15

20

WO 99/37048 PCT/US99/00360

storage location of the corresponding transport packet. Illustratively, the actual receipt
time field 129-5 is initially left blank.

Each transport packet containing a PCR furthermore includes the following process.
The first time a PCR bearing transport packet is received for any program, the processor
160 obtains a time stamp from the reference clock generator 113 of any adaptor 110 (or any
other reference clock generator 113 that is synchronously locked to the reference clock
generators 113 of the adaptors 110). As described below, the reference clocks 113 are
synchronously locked. The obtained time stamp is assigned to the first ever received PCR
bearing transport packet of a program as the receipt time of this transport packet. Note that
other to-be-remultiplexed transport packets may have been received prior to this first
received PCR bearing transport packet. The known internal buffering delay at the
remultiplexer node 100 may be added to the receipt time stamp to generate an estimated
departure time which is assigned to the transport packet (containing the first ever received
PCR of a particular program).

After the second successive transport packet bearing a PCR for a particular program
is received, the processor 160 can estimate the transport packet rate between PCRs of that
program received via the asynchronous interface 140. This is achieved as follows. The

processor 160 forms the difference between the two successive PCRs of the program. The

‘processor then divides this difference by the number of transport packets of the same

program between the transport packet containing the first PCR and the transport packet
containing the second PCR of the program. This produces the transport packet rate for the
program. The processor 160 estimates the departure time of each transport packet ofa

program between the PCRs of that program by multiplying the transport packet rate for the

86

10

15

20

WO 99/37048 PCT/US99/00360

program with the offset or displacement of each such transport packet from the transport
packet containing the first PCR. The offset is determined by subtracting the transport
packet queue position of the tranéport packet bearing the first PCR from the transport
packet queue position for which an estimated departure time is being calculated. (Note that
the queue position of a transport packet is relative to all received transport packets of all
received streams.) The processor 160 then adds the estimated departure time assigned to
the transport packet containing the first PCR to the product thus produced. The processor
160 illustratively stores the estimated departure time of each such transport packet in the
field 129-10 of the descriptor that points thereto.

After assigning an estimated departure time stamp to the transport packets of a
program, the processor 160 may discard transport packets (according to a user
specification) that will not be outputted in a TS. The above process is then continuously
repeated for each successive pair of PCRs of each program carried in the TS. The data of
the descriptors with the estimated departure times may then be transferred to the appropriate
transmit queue(s) in the course of the processor 160 executing transmit PID handler
subroutines. Note also that initially some transport packets may be received for a program
prior to receiving the first PCR of that program. For these transport packets only, the
transport packet rate is estimated as the transport packet rate between the first and second
PCR of that program (even though these packets are not between the first and second
PCR's). The estimated departure time is then determined as above.

As with PCRs received from a synchronous interface such as an adaptor 110, PCRs
received via the asynchronous interface 140 are corrected for drift between each program

clock and the local reference clocks 113 used to assign estimated receipt time stamps and

87

10

15

20

WO 99/37048 PCT/US99/00360

to output transport packets. Unlike transport packets received from an adaptor 110, the
transport packets received from the interface 140 do not have actual receipt time stamps
recorded therefor. As such, there is no reference clock associated with each transport
packet from which drift can accurately be measured. Instead, the processor 160 uses a
measure of the transmit queue length or current delay therein in the remultiplexer node 100
to estimate drift. Ideally, the transmit queue length should not vary from a predetermined
known delay in the remultiplexer node 100. Any variation in transmit queue length is an
indication of drift of the reference clock generator(s) 113 of the adaptor(s) 110 relative to
the program clocks of the programs. As such, the processor 160 adjusts a measure of drift
upwards or downwards depending on the difference between. the current transmit queue
length and the expected, ideal transmit queue length. For example, each time a transmit
descriptor is allocated to a transport packet, the processor 160 measures the current transmit
queue length and subtracts it from the ideal transmit queue length in the remultiplexer node
100. The difference is the drift. The drift thus calculated is used to adjust the PCRs and
estimated departure times of the transport packets that carry such PCRs. That is, the drift
thus calculated is subtracted from the PCR of a transport packet received via the
asynchronous interface which is placed into the later time slot than the time slot

corresponding to the estimated departure time of the transport packet. Likewise, the drift

‘may be subtracted from the estimated departure time of the PCR bearing transport packet

prior to assignment of an actual dispatch time. Note that this estimated drift is only used
for transport packets received from the asynchronous interface 140 and not other transport

packets received via a synchronous interface such as the adaptor 110.

88

10

15

20

WO 99/37048 PCT/US99/00360

Now consider the problem of contention. When two (or more) received transport
packets contend for assignment to the same transport packet time slot (and actual dispatch
time) of the outputted remultiplexed TS, one transport packet is assigned to the time slot
and the other is assigned to the next time slot. If the other transport packet contains a PCR,
the PCR is adjusted by the number of time slots it is displaced from its ideal time slot to

reflect the assignment to a later time slot.

Assisted Output Timing

As noted above, the interface 140 does not receive transport packets at any
partiéular time. Likewise, the interface 140 does not transmit transport packets at any
particular time. However, even though the interface 140, and the communication link to
which it is attached, do not provide a constant end-to-end delay, it is desirable to reduce the
variation in end-to-end delay as much as possible. The remultiplexer node 100 provides
a manner for minimizing such variations.

According to an embodiment, the processor 160 allocates a transmit descriptor of
a transmit queue assigned to the interface 140 for each transport packet to be outputted via
the interface 140. This may be achieved using an appropriate set of transmit PID handler
subroutines for the transmit queue assigned to the output port of the interface 140. The
processor 160 furthermore assigns an adaptor 110 for managing the outputting of data from
this interface 140. Although the transmit queue is technically “assigned” to the interface
140, the DMA control circuit 116 of the adaptor 110 assigned to managing the output from
the interface 140 actually obtains control of the descriptors of the descriptor queue assigned

to the interface 140. The data link control circuit 112 accesses such descriptors, as

89

10

15

20

WQ 99/37048 PCT/US99/00360

described below, which may be maintained in the cache 114. Thus, the set of transmit PID
handler subroutines assigned to this queue, and executed by the processor 160, is actually
triggered by an interrupt generated by the data link control circuit 112 which examines the
queue.

As above, in response to the interrupt, the processor 160 examines the to-be-
scheduled descriptors, i.e., in connection queues, selects one or more descriptors of these
connection queues to be outputted from the output port of interface 140 and allocates
transmit descriptors for the selected descriptors of the connection queues at the tail of the
transmit queue associated with the output port of the interface 140. Unlike the outputting
of transport packets described above, the processor 160 may also gather the transport
packets associated with the selected descriptors of the connection queues and actually
physically organize them into a queue-like buffer, if such buffering is necessary for the
interface 140.

As above, the DMA control circuit 116 obtains control of a sequence of one or more
descriptors, associated with the output port of the interface 140, following the last
descriptor of which the DMA control circuit 116 obtained control. (Note that it is irrelevant
whether or not the transport packets corresponding to the descriptors are retrieved. Because
the data link control circuit 112 controls the outputting of transport packets at the interface
114, no transport packets are outputted from the output port connected to that data link
interface 112. Alternatively, the data link control circuit 112 can operate exactly as
described above, thereby producing a mirror copy of the outputted TS. In such a case, a
second copy of each transport packet, accessible by the adaptor. 110, must also be

provided.) As above, the data link control circuit 112 retrieves each descriptor from the

90

10

15

20

WO 99/37048 PCT/US99/00360

cache and determines, based on the indicated dispatch time recorded in field 129-5, when
the corresponding transport packet is to be transmitted relative to the time indicated by the
reference clock generator 113. Approximately when the time of the reference clock
generator 113 equals the dispatch time, the data link control circuit 112 generates an
interrupt to the processor 160 indicating that the transport packet should be transmitted
now. This can be the same interrupt as generated by the data link control circuit 112 when
it transmits k> 1 transport packets. However, the interrupt is preferably generated every k=1
transport packets. In response, the processor 160 examines the appropriate table of pointers
to transmit PID handler subroutines and execute the correct transmit PID handler
subroutine. In executing the transmit PID handle subroutine, the processor 160 issues a
command or interrupt for causing the interface 140 to transmit a transport packet. This
causes the very next transport packet to be transmitted from the output port of the interface
140 approximately when the current time of the reference clock generator 113 matches the
dispatch time written in the descriptor corresponding to the transport packet. Note that
some bus and interrupt latency will occur between the data link control circuit 112 issuing
the interrupt and the interface 140 outputting the fransport packet. In addition, some
Jatency may occur on the communication link to which the interface 140 is attached

(because it is busy, because of a collision, etc.) To a certain extent, an average amount of

“such latency can be accommodated through judicious selection of dispatch times of the

transport packets by the processor 160. Nevertheless, the outputting of transport packets
can be fairly close to the correct time, albeit less close than as can be achieved using the

adaptor 110 or interface 150. The processor 160 furthermore transfers one or more

91

10

15

20

WO 99/37048 PCT/US99/00360

descriptors to the transmit queue assigned to the output port of the interface 140 as

described above.

Inter-Adaptor Reference Clock Locking

A particular problem in any synchronous system employing multiple clock
generators is that the time or count of each generator is not exactly the same as each other
clock generator. Rather, the count of each clock generator is subject to drift (e.g., as a
result of manufacturing tolerance, temperature, powef variations, etc.). Such a concem is
also present in the environment 10. Each remultiplexer node 100, data injector 50, data
extractor 60, controller 20, etc. may have a reference clock generator, such as the reference
clock generator 113 of the adaptor(s) 110 in the remultiplexer node 100. It is desirable to
lock the reference clock generators of at least each node 50, 60 or 100 in the same TS signal
flow path so that they have the same time.

In a broadcast environment, it is useful to synchronize all equipment that generates,

edits or transmits program information. In analog broadcasting, this may be achieved using.

‘a black burst generator or a SMPTE time code generator. Such synchronization enables

seamless splicing of real-time video feeds and reduces noise associated with coupling
asynchronous video feeds together.

In the remultiplexer node 100, the need for synchronization is even more important.
This is because received transport packets are scheduled for departure based on one
reference clock and actually retrieved for dispatch based on a second reference clock. It is
assumed that any latency incurred by transport packets in the remultiplexer node 100 is

identical. However, this assumption is only valid if there is only negligible drift between

92

10

15

20

WO 99/37048 PCT/US99/00360

the reference clock according to which packet departure is estimated and the reference clock
according to which transport packets are actually dispatched.

According to an embodiment, multiple techniques are provided for locking, i.e.,
synchronizing, reference clock generators 113. In each technique, the time of each “slave”
reference clock generator is periodically adjusted in relation to a “master” reference clock
generator.

According to a first technique, one reference clock generator 113 of one adaptor 110
is designated as a master reference clock generator. Each other reference clock generator
113 of each other adaptor 110 is designated as a slave reference clo;k generator. The
processor 160 periodically obtains the current system time of each reference clock generator
113, including the master reference clock generator and the slave reference clock
generators. Illustratively, this is achieved using a process that “sleeps” i.e., is idle for a
particular period of time, wakes up and causes the processor 160 to obtain the current time
of each reference clock generator 113. The processor 160 compares the current time of
each slave reference clock generator 113 to the current time of the master reference clock
generator 113. Based on these comparisons, the processor 160 adjust each slave reference
clock generator 113 to synchronize them in relation to the master reference clock generato.r

113. The adjustment can be achieved simply by reloading the reference clock generators

'113, adding an adjusted time value to the system time of the reference clock generator 113

or (filtering and) speeding-up or slowing-down the pulses of the voltage controlled
oscillator that supplies the clock pulses to the counter of the reference clock generator 113.
The last form of adjustment is analogous to a phase-locked loop feedback adjustment

described in the MPEG-2 Systems specification.

93

10

15

20

WO 99/37048 PCT/US99/00360

Consider now the case where the master reference clock generator and the slave
reference clock generator are not located in the same node, but rather are connected to each
other by a communication link. For example, the master reference clock generator may be
in a first remultiplexer node 100 and the slave reference clock generator may be in a second
remultiplexer node 100, where the first and second remultiplexer nodes are connected to
each other by a communication link extending between respective adaptors 110 of the first
and second remultiplexer nodes 100. Periodically, in response to a timer process, the
processor 160 issues a command for obtaining the current time of the master reference
clock generator 113. The adaptor 110 responds by providing the current time to the
processor 160. The processor 160 then transmits the current time to each other slave
reference clock via the communication link. The slave reference clocks are then adjusted,
e.g., as described above.

It should be noted that any time source or time server can be used as the master
reference clock generator. The time of this master reference clock ‘generator is transmitted
via the dedicated communication link with a constant end-to-end delay to each other node
containing a slave reference clock.

If two or more nodes 20, 40, 50, 60 or 100 of a remultiplexer 30 are separated by

a large geographical distance, it might not be desirable to synchronize the reference clock

generators of each node to the reference clock generator of any other node. This is because

any signal transmitted on a communication link is subject to some finite propagation delay.
Such a delay causes a latency in the transmission of transport packets, especially transport .
packets bearing synchronizing time stamps. Instead, it might be desirable to use a reference

clock source more equally distant from each node of the remultiplexer 30. As is well

94

10

15

20

WO 99/37048 PCT/US99/00360

known, the U.S. government maintains both terrestrial and satellite reference clock
generators. These sources reliably transmit the time on well known carrier signals. Each
node, such as the remultiplexer node 100, may be provided with a receiver, such as a GPS
receiver 180, that is capable of receiving the broadcasted reference clock. Periodically, the
processor 160 (or other circuitry) at each node 20, 40, 50, 60 or 100 obtains the reference
clock from the receiver 180. The processor 160 may transfer the obtained time to the
adaptor 110 for loading into the reference clock generator 113. Preferably, however, the
processor 160 issues a command to the adaptor 110 for obtaining the current time of the
reference clock generator 113. The processor 160 then issues a command for adjusting,
e.g., speeding up or slowing down, the voltage controlled oscillator of the reference clock
generator 113, based on the disparity between the time obtained from the receiver 180 and

the current time of the reference clock generator 113.

Networked Remultiplexing

Given the above described operation, the various functions of remultiplexing may
be distributed over a qetwork. For example, multiple remultiplexer nodes 100 may be
interconnected to each other by various communication links, the adaptor 110, and
interfaces 140 and 150. Each of these remultiplexer nodes 100 may be controlled. by the
controller 20 (FIG 1) to act in concert as a single remultiplexer 30.

Such a network distributed remultiplexer 30 may be desirable as a matter of
convenience or flexibility. For example, one remultiplexer node 100 may be connected to
multiple file servers or storage devices 40 (FIG 1). A second remultiplexer node 100 may

be connected to multiple other input sources, such as cameras, or demodulators/receivers.

95

10

15

20

WO 99/37048 PCT/US99/00360

Other remultiplexer nodes 100 may each be connegted to one or more
transmitters/modulators or recorders. Alternatively, remultiplexer nodes 100 may be
connected to provide redundant functionality and therefore fault tolerance in the event one
remultiplexer node 100 fails or is purposely taken out of service.

Consider a first network remultiplexer 30' shown in FIG 3. In this scenano,
multiple remultiplexer nodes 100, 100", 100" are connected to each other via an
asynchronous network, such as a IQO BASE-TX Ethernet network. Each of the first two
remultiplexer nodes 100, 100" receives four TSs TS10-TS13 or TS14-TS17 and produces
a single remultiplexed output TS TS18 or TS19. The third remultiplexer 100™ receives the
TSs TS18 and TS19 and produces the output remultiplexed TS TS20. In the example
shown in FIG 3, the remultiplexer node 106’ receives real-time transmitted TSs TS10-TS13
from a demodulator/receiver via its adaptor 110 (FIG 2). On the other hand, the
remultiplexer 100" receives previously stored TSs TS14-TS17 from a storage device via
a synchronous interface 150 (FIG 2). Each of the remultiplexer nodes 100' and 100"
transmits its respective outputted remultiplexed TS, 1.e., TS18 or TS19, to the remultiplexer
node 100™ via an asynchronous (100 BASE-TX Ethernet) interface 140 (FIG 2) to an
asynchronous (100 BASE-TX Ethernet) interface 140 (FIG 2) of the remultiplexer node

100"™. Advantageously, each of the remultiplexer nodes 100" and 100" use the above-

"described assisted output timing technique to minimize the variations in the end-to-end

delays caused by such communication. In any event, the remultiplexer node 100" uses the
Re-timing of un-timed data technique described above to estimate the bit rate of each

program in TS18 and TS19 and to dejitter TS18 and TS19.

96

10

15

20

WO 99/37048 PCT/US99/00360

Optionally, a bursty device 200 may also be included on at least one communication
link of the system 30'. For example, the communication medium may be shared with other
terminals that perform ordinary data processing, as ina LAN. However, bursty devices 200
may also be provided for purposes of injecting and/or extracting data into the TSs, e.g., the
TS20. For example, the bursty device 200 may be a server that provides internet access,
a web server a web terminal, etc.

Of course, this is simply one example of a network distributed remultiplexer. Other
configurations are possible. For example, the communication protocol of the network in
which the nodes are connected may be ATM, DS3, etc.

Two important properties of the network distributed remultiplexer 30' should be
noted. First, in the particular network shown, any input port can receive data, such as
bursty data or TS data, from any output port. That is, the remultiplexer node 100’ can
receive data from the remultiplexer nodes 100" or 100™ or the bursty device 200, the
remultiplexer node 100" can receive data from the remultiplexer nodes 100" or 100™ or the
bursty device 200, the remultiplexer node 100" can receive data from any of the
remultiplexer nodes 100' or 100" or the bursty device 200 and the bursty device 200 can
receive data from any of the remultiplexer nodes 100, 100" or 100™. Second, a
remultiplexer node that performs data extraction and discarding, i.e., the remultiplexer node
100™ can receive data from more than one source, namely, the remultiplexer nodes 100" or
100" or the bursty device 200, on the same communication link.

As a consequence of these two properties, the “signal flow pattern” of the transport
packets from source nodes to destination nodes within the remultiplexer is independent of

the network topology in which the nodes are connected. In other words, the node and

97

10

15

WO 99/37048 PCT/US99/00360

communication link path traversed by transport packets in the network distributed
remultiplexer 30' does not depend on the precise physical connection of the nodes by
communication links. Thus, a very general network topology may be used--remultiplexer
nodes 100 may be connected in a somewhat arbitrary topology (bus, ring, chain, tree, star,
etc.) yet still be able to remultiplex TSs to achieve virtually any kind of node to node signal
flow pattern. For example, the nodes 100', 100", 100" and 200 are connected in a bus
topology. Yet any of the following signal flow patterns for transmitted data (e.g., TSs) can
be achieved: from node 100’ to node 100" and then to node 100™; from each of node 100’
and 100" in parallel to node 200; from nodes 200 and 100", in parallel to node 100" and
then from node 100" to node 100™, etc. In this kind of transmission, time division
multiplexing may be necessary to interleave signal flows between different sets of .
communicating nodes. For example, in the signal flow illustrated in FIG 3, TS18 and TS19
are time division multiplexed on the shared communications medium.

The above discussion is intended to be merely illustrative of the invention. Those
having ordinary skill in the art may devise numerous alternative embodiments without

departing from the spirit and scope of the following claims.

98

10

15

WO 99/37048 PCT/US99/00360

Claims
The claimed invention is:
1. A method for optimizing the bandwidth of a transport stream comprising the steps

of:

(a) receiving a transport stream at a predetermined bit rate, said transport stream
including variably compressed program data bearing transport packets and one or more null
transport packets, each of said null transport packets being inserted into a time slot of said
received transport stream to maintain said predetermined bit rate of said transport stream
when none of said compressed program data bearing transport packets are available for
insertion into said received transport stream at said transport packet time slot, and

(b) selectively replacing one or more of said null transport packets with another

to-be-remultiplexed data bearing transport packet.

2. The method of claim 1 wherein said another to-be-remultiplexed data bearing

transport packet contains program specific information.

3. The method of claim 1 wherein said another to-be-remultiplexed data bearing

transport packet contains transactional data having no bit rate or transmission latency-

'requirement for presenting information in a continuous fashion.

99

10

15

WO 99/37048 PCT/US99/00360

4. The method of claim 1 further comprising the steps of:

(c) extracting selected ones of said transport packets of said received transport
stream and discarding each non-selected transport packet, each of said null transport
packets being discarded,

(d) storing said selected transport packets,

(e) storing at least one other data bearing transport packet,

(f) - scheduling each of said stored transport packets for output in an outputted
transport stream, and

(g) outputting each of said stored transport packets in a time slot corresponding

to said schedule.

5. The method of claim 4 further comprising the steps of:

(h) at each time slot of said outputted transport stream for which a
corresponding one of said stored transport packets is scheduled, outputting said
corresponding stored transport packet scheduled for said time slot, and

@) if no transport packet is scheduled for output at one of said time slots,
outputting a null transport packet,

wherein said null transport packets of said outputted transport stream occupy
less bandwidth of said outputted transport stream than said null transport packets occupy

in each transport stream received in step ().

100

10

15

WO 99/37048 PCT/US99/00360

6. The method of claim 3 wherein said step (b) further comprises selectively assigning
data bearing transport packets to time slots of said outputted transport stream so as to

regulate a transmission bit rate of said data bearing transport packets to a receiver buffer.

7. A remultiplexer for optimizing the bandwidth of a transport stream comprising:

a first interface for receiving a transport stream at a predetermined bit rate,
said transport stream including variably compressed program data bearing transport packets
and one or more null transport packets, each of said nuil transport packets being inserted
into a time slot of said received transport stream to maintain said predetermined bit rate of
said transport stream when none of said compressed program data bearing transport packets
are available for insertion into said received transport stream at said transport packet time
slot,‘and

~ a processor for selectively replacing one or more of said null transport

packets with another to-be-remultiplexed data bearing transport packet.

8. The remultiplexer of claim 7 wherein said another to-be-remultiplexed data bearing

transport packet contains program specific information.

9. The remultiplexer of claim 7 wherein said another to-be-remultiplexed data bearing

transport packet contains transactional data having no bit rate or transmission latency

requirement for presenting information in a continuous fashion.

101

10

15

20

WO 99/37048 PCT/US99/00360

10. The remultiplexer of claim 7 wherein said first interface and said processor extract
selected ones of said transport packets of said received transport stream and discard each
non-selected transport packet, each of said null transport packets being discarded, said
remultiplexer further comprising:

a memory in which said first interface and said processor store said selected
transport packets, and in which said processor stores at least one other data bearing
transport packet, said processor scheduling each of said stored transport packets for output
in an outputted transport stream, and

a second interface for outputting each of said stored transport packets in a

time slot corresponding to said schedule.

11. Theremultiplexer of claim 10 wherein, at each time slot of said outputted transport
stream for which a corresponding one of said stored transport packets is scheduled, said
second interface outputs said corresponding stored transpbrt packet scheduled for said time
slot, and, if no transport packet is scheduled for output at one of said time slots, said second
interface outputs a null transport packet, said null transport packets of said outputted
transport stream occupying less bandwidth of said outputted transport stream than said null

transport packets occupy in each received transport stream.
12. The remultiplexer of claim 9 wherein said processor selectively assigns data bearing

transport packets to time slots of said outputted transport stream so as to regulate a

transmission bit rate of said data bearing transport packets to a receiver buffer.

102

10

15

WO 99/37048 PCT/US99/00360

13. A bandwidth optimized transport stream produced by the steps of:

(@) receiving a transport stream at a predetermined bit rate, said transport stream
including variably compressed program data bearing transport packets and one or more null
transport packets, each of said null transport packets being inserted into a time slot of said
received transport stream to maintain said predetermined bit rate of said transport stream
when none of said compressed program data bearing transport packets are available for
insertion into said received transport stream at said transport packet time slot, and

(b) selectively replacing one or more of said null transport packets with another

to-be-remultiplexed data bearing transport packet.

14. The bandwidth optimized bitstream of claim 13 produced by the further steps of:

(c) extracting selected ones of said transport packets of said received transport
stream and discarding each non-selected transport packet, each of said null transport
packets being discarded,

(d) storing said selected transport packets,

(e) storing at least one other data bearing transport packet,

® scheduling each of said stored transport packets for output in an outputted
transport stream, and

(g) outputting each of said stored transport packets in a time slot corresponding

to said schedule.

103

10

15

20

WO 99/37048 PCT/US99/00360

15. The bandwidth optimized transport stream of claim 14 produced by the further steps
of:

(h) at each time slot of said outputted transport stream for which a
corresponding one of said stored transport packets is scheduled, outputting said
corresponding stored transport packet scheduled for said time slot, and

(1) if no transport packet is scheduled for output at one of said time slots,
outputting a null transport packet,

wherein said null transport packets of said outputted transport stream occupy
less bandwidth of said outputted transport stream than said null transport packets occupy

in each transport stream received in step (a).

16. The bandwidth optimized transport stream of claim 13 wherein said step (b) further
comprises the step of selectively assigning data bearing transport packets to time slots of
said outputted transport stream sé as to regulate a transmission bit rate of said data bearing
transport packets to a receiver buffer.

17. A method for remultiplexing transport packets, including transport packets
containing compressed data for one or more video programs, each of said video programs

for which said transport packets contain compressed data comprising a constant end-to-end

" communication delay requirement, an independent bit rate and program clock reference

time stamps of an independent encoder system time clock to which decoding and
presentation of said video program is synchronized, said method comprising the steps of:
(@) receiving a transport packet from a particular input port,

(b) allocating an unused descriptor to said received transport packet, and

104

10 .

15

20

WO 99/37048 PCT/US99/00360

(c) recording a receipt time stamp in said allocated descriptor indicating a time
at which said transport packet was received,
wherein said allocated descriptors are maintained in a receipt queue

associated with said input port in order of receipt from said particular input port.

18. The method of claim 17 further comprising the step of scheduling transmission of
said received transport packet according to said receipt time stamp and an internal buffering

delay between receipt of said transport packet and output of said transport packet.

19. The method of claim 17 further comprising the steps of:
(d) examining each descriptor in said receipt queue,
(¢) allocating a descriptor of a transmit queue associated with an output port

from which a transport packet pointed to by each examined descriptor is to be transmitted,

if any

(g) assigning a dispatch time to said allocated descriptor of said transmit queue,
and

(h) ordering said descriptors of said transmit queue in order of increasing
dispatch time.

20. The method of claim 19 further comprising the steps of:
() transmitting each transport packet, to which a corresponding descriptor in
said transmit queue points, from said output port in a time slot of an outputted transport

stream corresponding to said dispatch time assigned to said corresponding descriptor.

105

10

15

20

WO 99/37048 PCT/US99/00360

21. A method for remultiplexing transport packets, including transport packets
containing compressed data for one or more video programs, each of said video programs
for which said transport packets contain compressed data comprising a constant end-to-end
communication delay requirement, an independent bit rate and program clock reference
time stamps of an independent encoder system time clock to which (iecoding and
presentation of said video program is synchronized, said method comprising the steps of:

(a) sequentially retrieving each descriptor from a queue of transmit descriptors,
and a transport packet to which each retrieved descriptor points,

(b) at a time corresponding to a dispatch time recorded in each retrieved-
descriptor, transmitting said retrieved transport packet to which said retrieved descriptor
points in a time slot of an outputted transport stream corresponding to said dispatch time

recorded in said retrieved descriptor.

22. The method of claim 21 further comprising the steps of:

(©) examining each descriptor in one or more queues of descriptors pointing to
to-be-outputted transport packets,

(d) allocating a descriptor of said transmit queue associated with an output port

from which a transport packet pointed to by each examined descriptor is to be transmitted,

“if any
(e) assigning a dispatch time to said allocated descriptor of said transmit queue,
and
§3) ordering said descriptors of said transmit queue in order of increasing
dispatch time.

106

10

15

20

WO 99/37048 PCT/US99/00360

23. A remultiplexer for remultiplexing transport packets, including transport packets
containing compressed data for one or more video programs, leach of said video programs
for which said transport packets contain compressed data comprising a constant end-to-end
communication delay requirement, an independent bit rate and program clock reference
time stamps of an independent encoder system time clock to which decoding and
presentation of said video program is synchronized, said remultiplexer comprising:

a cache,

a data link control circuit.connected to said cache for receiving a transport
packet from a particular input port, for allocating an unused descriptor of said cache to said
received transport packet, and for recording a receipt time stamp in said allocated descriptor
indicating a time at which said transport packet was received,

wherein said allocated descriptors are maintained in a receipt queue

associated with said input port in order of receipt from said particular input port.

24. The remultiplexer of claim 23 further comprising a processor for scheduling
transmission of said received transport packet according to said receipt time stamp and an
internal buffering delay between receipt of said transport packet and output of said transport

packet.

25. The remultiplexer of claim 23 further comprising a processor for examining each
descriptor in said receipt queue, for allocating a descriptor of a transmit queue associated
with an output port from which a transport packet pointed to by each examined descriptor

is to be transmitted, if any, for assigning a dispatch time to said allocated descriptor of said

107

10

15

20

WO 99/37048 PCT/US99/00360

transmit queue, and for ordering said descriptors of said transmit queue in order of

increasing dispatch time.

26. The method of claim 25 further comprising:

a second data link control circuit for transmitting each transport packet, to
which a corresponding descriptor in said transmit queue points, from said output port in a
time slot of an outputted transport stream corresponding to said dispatch time assigned to

said corresponding descriptor.

27. A remultiplexer for remultiplexing transport packets, including transport packets
containing compressed data for one or more video programs, each of said video programs
for which said transport packets contain compressed data comprising a constant end-to-end
communication delay requirement, an independent bit rate and program clock reference
time stamps of an independent encoder system time clock to which decoding and
presentation of said video program is synchronized, said remultiplexer comprising:

a cache and

a data link control circuit connected to said cache for sequentially retrieving

from said cache each descriptor from a queue of transmit descriptors, and a transport packet

"to which each retrieved descriptor points, and, at a time corresponding to a dispatch time

recorded in each retrieved descriptor, for transmitting said retrieved transport packet to
which said retrieved descriptor points in a time slot of an outputted transport stream

corresponding to said dispatch time recorded in said retrieved descriptor.

108

10

15

20

WO 99/37048 PCT/US99/00360

28. The remultiplexer of claim 27 further comprising:

a processor for examining each descriptor in one or more queues of
descriptors pointing to to-be-outputted transport packets, for allocating a descriptor of said
transmit queue associated with an output port from which a transport packet pointed to by
each examined descriptor is to be transrhitted, if any, for assigning a dispatch time to said
allocated descriptor of said transmit queue, and for ordering said descriptors of said

transmit queue in order of increasing dispatch time.

20. | A transport stream containing transport packets, including transport packets
containing compressed data for one or more video programs, each of said video programs
for which said transport packets contain compressed data comprising a constant end-to-end
communication delay requirement, an independent bit rate and program clock reference
time stamps of an independent encoder system time clock to which decoding and
presentation of said video program is synchronized, said transport stream being produced
by the steps of:

(a) receiving a transport packet from a particular input port,

(b) allocating an unused descriptor to said received transport packet, and

(c) recording a receipt time stamp in said allocated descriptor indicating atime

" at which said transport packet was received,

wherein said allocated descriptors are maintained in a receipt queue

associated with said input port in order of receipt from said particular input port.

109

10

15

20

WO 99/37048 PCT/US99/00360

30. A transport stream containing transport packets, including transport packets
containing compressed data for one or more video programs, each of said video programs
for which said transport packets contain compressed data comprising a constant end-to-end
communication delay requirement, an independent bit rate and program clock reference
time stamps of an independent encoder system time clock to which decoding and
presentation of said video program is synchronized, said transport stream being produced
by the steps of:

(a) sequentially retrieving each descriptor from a queue of transmit descriptors,
and a transport packet to which each retrieved descriptor points,

(b) at a time corresponding to a dispatch time recorded in each retrieved

descriptor, transmitting said retrieved transport packet to which said retrieved descriptor
points in a time slot of an outputted transport stream corresponding to said dispatch time
recorded in said retrieved descriptor.
31. A method for remultiplexing one or more program bearing transport streams, each
program comprising one or more elementary streams, each transport stream comprising
transport packets, including transport packets that carry elementary stream data for one or
more programs, said method comprising the steps of:

(a) selectively extracting only particular ones of said transport packets from
each of said program bearing transport streams according to an initial user specification for
remultiplexed transpoi't stream content,

(b) reassembling said selected ones of said extracted transport packets, and,

transport packets containing program specific information, if any, into an outputted

110

10

15

20

WO 99/37048 PCT/US99/00360

remultiplexed transport stream, according to said initial user specification for remultiplexed
transport stream content,

(c) outputting said reassembled remultiplexed transport stream as a continuous
bit stream,

(d) while performing said steps (a), (b) and (c), dynamically receiving one or
more new user specifications for remultiplexed transport stream content which specifies one
or more of:

O different transport packets to be extracted in said step (a),
(II) different transport packets to be reassembled in said step (b), and

(e) in response to receiving said one or more new user specifications,
dynamically ceasing t§ extract or reassemble transport packets according to said initial user
specification and dynamically beginning to extract or reassemble transport packets
according to said new user specification without introdu;:ing a discontinuity in said

outputted remultiplexed transport stream.

32. The method of claim 31 further comprising the step of:
® responding to a new user specification for reassembling different transport

packets in step (b) by generating substitute program specific information that references

 said different transport packets of said new user specification.

33. The method of claim 31 further comprising:

® receiving said initial user specification and each new user specification,

111

10

15

WO 99/37048 PCT/US99/00360

(8 determining a total bit rate requirement for said remultiplexed transport
stream reassembled according to each of said received user specifications,
(h) performing steps (), (b) and (¢) only if said determined bit rate requirement

is less than or equal to a bit rate of said outputted remultiplexed transport stream.

34. The method of claim 31 further comprising the steps of:

® continuously identifying streams available for assembly into said outputted
remultiplexed transport stream, and

(g) prompting a user for a new user specification that specifies a selection of

said identified, available streams as said content for said remultiplexed transport stream.

35. The method of claim 31 wherein said new user specification specifies a new
mapping of packet identifiers of one or more transport packets reassembled in said step (b),
said step (€) comprising mapping packet identifiers of said one or more transport packets

according to said new mapping.

36. The method of claim 31 wherein said new user specification specifies scrambling
one or more particular elementary streams, said method further comprising the steps of:
(a) scrambling said transport packets of said s;peciﬁed elementary streams using
control words,
(b) providing transport packets containing said control words for reassembly

into said remultiplexed transport stream, and

112

10

15

20

WO 99/37048 PCT/US99/00360

(c) generating transport packets containing program specific information
identifying which transport packets contain said control words and to which elementary

streams said control word bearing transport packets correspond.

37. A method for remultiplexing transport packets of one or more inputted transport
streams into an output transport stream, at least one of said inputted transport streams
containing one or more programs and program definitions, each of said programs
comprising one or more elementary streams, and each of said at least one inputted transport
streams comprising program definitions identifying which transport packets contain
elementary stream data for each elementary stream contained in said inputted transport
stream and which of said elementary streams make up each program contained in said
inputted transport stream, said method comprising the steps of:

(a) generating a user specification indicating one or more programs of said
inputted transport streams to be outputted in said output transport stream,

(b) continuously capturing said program definitions,

(©) continuously determining from said captured program definitions which
elementary streams make up each program, and

(d) outputting in said outputted transport stream each transport packet

" containing elementary stream data of each elementary stream determined in said step (c)

to make up each program indicated to be outputted in said user specification without

introducing a discontinuity in said outputted transport stream.

113

10

15

20

WO 99/37048 PCT/US99/00360

38. A remultiplexer for remultiplexing one or more program bearing transport streams,
each program comprising one or more elementary streams, each transport stream
comprising transport packets, including transport packets that carry elementary stream data
for one or more programs, said method comprising:

a first interface for selectively extracting only particular ones of said
transport packets from each of said program bearing transport streams according to an
initial user specification for remultiplexed transport stream content,

a second interface for reassembling said selected ones of said extracted
transport packets, and, transport packets containing program specific information, if any,
into an outputted remultiplexed transport stream, according to said initial user specification
for remultiplexed transport stream content, and for outputting said reassembled
remultiplexed transport stream as a continuous bitstream, and

a processor for dynamically receiving one or more new user specifications
for remultiplexed transport stream content which specifies one or more of:

@ different transport packets to be extracted by said first interface,

(I) different transport packets to be reassembled by said second

interface,

while said first and second interfaces extract transport packets and reassemble and output

 said remultiplexed transport stream, and for, in response to receiving said one or more new

user specifications, causing said first and second interfaces to dynamically cease to extract
or reassemble transport packets according to said initial user specification and dynamically
begin to extract or reassemble transport packets according to said new user specification,

without introducing a discontinuity in said outputted remultiplexed transport stream.

114

10

15.

WO 99/37048 PCT/US99/00360

39. The remultiplexer of claim 38 wherein said processor responds to a new user
specification for reassembling different transport packets by generating substitute program
specific information that references said different transport packets of said new user

specification, for reassembly by said second interface.

40. The remultiplexer of claim 38 further comprising:

a controller for receiving said initial user specification and each new user
specification, determining a total bit rate requirement for said remultiplexed transport
stream reassembled according to each received user specification, and enabling said first
and second interfaces to extract and reassemble according to each of said new user
interfaces only if said determined bit rate requirement is less than or equal to a bit rate of

said outputted remultiplexed transport stream.

41. The remultiplexer of claim 38 wherein said processor continuously identifies
streams available for assembly into said outputted remultiplexed transport stream, said
remultiplexer further comprising:

a controller for prompting a user for a new user specification that specifies
a selection of said identified, available streams as said content for said remultiplexed

transport stream.

42. The remultiplexer of claim 38 wherein said new user specification specifies a new

mapping of packet identifiers of one or more transport packets reassembled by said second

115

10

15

20

WO 99/37048 PCT/US99/00360

interface, said processor mapping packet identifiers of said one or more transport packets

according to said new mapping.

43. The remultiplexer of claim 38 wherein said new user specification specifies
scrambling one or more particular elementary streams, said remultiplexer further
cbm_promising:

a scrambler for scrambling said transport packets of said specified
elementary streams using control words,

wherein said processor obtains transport packets containing said control
words for reassembly into said remultiplexed transport stream and transport packets
containing program specific information identifying which transport packets contain said

control words and to which elementary streams said control words correspond.

44, A remultiplexer for remultiplexing transport packets of one or more inputted
transport streams into an output transport stream, at least one of said inputted transport
stream containing one or more programs and program definitions, each of said programs
comprising one or more elementary streams, and each of said at least one inputted transport

stream comprising program definitions identifying which transport packets of said inputted

' transport stream contain elementary stream data for each elementary stream contained in

said inputted transport stream and which elementary streams make up each program
contained in said elementary stream, said remultiplexer comprising:
a controller for generating a user specification indicating one or more

programs of said inputted transport streams to be outputted in said output transport stream,

116

10

15

20

WO 99/37048 PCT/US99/00360

a first adaptor for continuously capturing said program definitions,

a processor for continuously determining from said captured program
definitions which elementary streams make up each program, and

a second adaptor for outputting in said outputted transport stream each
transport packet containing elementary stream data of each elementary stream determined
to make up each program indicated to be outputted in said user specification without

introducing a discontinuity into said outputted transport stream.

45. An outputted remultiplexed transport stream, remultiplexed from one or more
program bearing transport streams, each program comprising one or more elementary
streams, each transport stream comprising transport packets, including transport packets
that carry elementary stream data for one or more programs, said outputted remultiplexed
transport stream being produced by the steps of:

(a) selectively extracting only particular ones of said transport packets from
each of said program bearing transport streams according to an initial user specification for
remultiplexed transport stream content,

(b) reassembling said selected ones of said extracted transport packets, and,
transport packets containing program specific information, if any, into an outputted
remultiplexed transport stream, according to said initial user specification for remultiplexed
transport stream content,

(c) outputting said reassembled remultiplexed transport stream as a continuous

bit stream,

117

10

15

20

WO 99/37048 PCT/US99/00360
(d) while performing said steps (a), (b) and (c), dynamically receiving one or

more new user specifications for remultiplexed transport stream content which specifies one
or more of:

@ different transport packets to be extracted in said step (a),

(IT) different transport packets to be reassembled in said step (b), and

(e) in response to receiving said one or more new user specifications,

dynamically ceasing to extract or reassemble transport packets according to said initial user
specification and dynamically beginning to extract or reassemble transport packets
according to said new user specification without introducing a discontinuity in said

outputted remultiplexed transport stream.

46. An outputted transport stream reﬁultiplexed from one or more inputted transport
streams, at least one of said inputted transport streams containing one or more proéréms
and program definitions, each of said programs comprising one or more elementary
streams, and each of said at least one inputted transport streams comprising program
definitions identifying which transport packets contain elementary stream data for each
elementary stream contained in said inputted transport stream and which of said elementary

streams make up each program contained in said inputted transport stream, said outputted

 transport stream being produced by the steps of:

(a) generating a user specification indicating one or more programs of said
inputted transport streams to be outputted in said output transport stream,

(b) continuously capturing said program definitions,

(c) continuously determining from said captured program definitions which

elementary streams make up each program, and

118

10

15

20

WO 99/37048 PCT/US99/00360
(d) outputting in said outputted transport stream each transport packet

containing elementary stream data of each elementary stream determined in said step (c)
to make up each program indicated to be outputted in said user specification without
introducing a discontinuity in said outputted transport stream.

47. A method for multiplexing a first video program bearing bit stream into a second
bit stream, said first video program bearing bit stream éoritaining a set of plural time stamps
for each program contained therein indicating a time relative to a system time clock of an
encoder at which each packet of said program should appear in said first bit stream,
comprising the steps of:

(a) receiving said first video program bearing bit stream from a communication
link having a varying end-to-end transmission delay,

(b) determining a time at which each of one or more of packets carrying data
of the same program received from said first video program bearing bit stream should
appear in said second bit stream based on a plurality of time stamps of said program
received from said first video program bearing bit stream, and

(©) selectively transmitting selected ones of said one or more packets in said
second bit stream with a constant end-to-end delay at times that depend on said determined

times.
48. The method of claim 47 wherein said step (b) further comprises the steps of:

(b1) storing packets containing data received from said received first video

program bearing bit stream in a receipt queue,

119

10

15

20

WO 99/37048 PCT/US99/00360
(b2) identifying each packet containing data of a program stored in said receipt

queue between first and second particular packets containing consecutive time stamps of
said program,

(b3) determining a packet rate of said program based on a difference between
said first and second time stamps, and

(b4) assigning as a transmit time to each of said identified packets, the sum of a
transmit time assigned to said first particular packet and a product of said packet rate and

an offset of said identified packet from said first packet.

49. The method of claim 48 further comprising the steps of:

(b5) assigning to a first time stamp bearing packet received for each program
carried in said first bitstream a receipt time relative to a local clock, and

(b6) assigning as a transmit time to a packet containing data of said first time

stamp bearing packet the sum of said assigned receipt time and a known buffering delay.

50. The method of claim 47 wherein said step (c) further comprises the step of:
(c1) preventing buffer overflow and underflow at a receiver of said second bit
stream by inserting said identified packets into said second bit stream at said times that

depend on said determined times.

51. The method of claim 50 wherein said receiver buffer removes said identified
packets from said second bit stream according to time stamps corresponding to variably

compressed portions of said program, and a recovered system time clock for said program,

120

10

15

WO 99/37048 PCT/US99/00360

and wherein said variably compressed portions of said first video program bearing bit
stream have a number of bits which number depends on a presumed storage capacity of said

receiver buffer and a predetermined bit rate of said first video program.

52. The method of claim 51 wherein said step (c) further comprises the steps of:

(c1) determining a packet time slot of said second bitstream nearest in time to
said determined transmit time for a packet,

(c2) if more than one packet is nearest in transport time to a single one of said
packet time slots, assigning each of said packets nearest in time to said single packet time
slots to sequential packet time slots, and

(c3) adjusting a time stamp of each packet bearing a time stamp and which is
assigned to one of said packet time slots other than said single packet time slot based on the
number of packet time slots said assigned packet time slot is displaced from said single

packet time slot.

53. The method of claim 52 wherein each of said selected received packets is inserted
into a queue pending transmission, said step (c3) further comprising the steps of:

(c4) estimating a drift between a local clock and each of one or more system time

clocks of encoders that produced said received packets as a function of a difference between

a current queue length delay of said queue and an ideal queue length delay of said queue,

and

121

10

15

WO 99/37048 PCT/US99/00360
(c5) further adjusting each of said adjusted time stamps according to a

corresponding one of said drifts between said local clock and said system time clock of said

encoder that produced said packet.

54. The method of claim 47 further comprising the step of:
(d) receiving said first video program bearing bit stream from a computer

network.

55. The method of claim 47 further comprising the step of:
(d) receiving said first video program bearing bit stream from an Ethernet

network.

56. The method of claim 47 further comprising the step of:

(d) receiving said first video program bearing bit stream from an ATM network.

57. A remultiplexer for multiplexing a first video program bearing bit stream into a
second bit stream, said first video program bearing bitstream containing a set of plural time
stamps for each program contained therein indicating a time relative to a system time clock
of an encoder at which each packet of said program should appear in said first bit stream,
comprising:

an asynchronous interface for receiving said first video program bearing bit

stream from a communication link having a varying end-to-end transmission delay,

122

10

15

20

WO 99/37048 PCT/US99/00360

a processor connected to said asynchronous interface for determining a time
at which each of one or more of packets carrying data of the same program received from
said first video program bearing bit stream should appear in said second bitstream based
on a plurality of time stamps of said program received from said first video program
bearing bit stream, and

a synchronous interface for selectively transmitting selected ones of said one
or more packets in said second bitstream with a constant end-to-end delay at times that

depend on said determined times.

58. The remultiplexer of claim 57 further comprising:

a memory for storing packets containing data received from said received
first video program bearing bit stream in a receipt queue,

wherein said processor identifies each packet containing data of a program
stored in said receipt queue between first and second particular packets containing
consecutive time stamps of said program, determines a packet rate of said program based
on a difference between said first and second time stamps, and assigns as a transmit time
to each of said identified packets, the sum of a transmit time assigned to said first particular

packet and a product of said packet rate and an offset of said identified packet from said

 first packet.

59. The remultiplexer of claim 58 further comprising:
a local clock accessible to said processor, wherein said processor assigns to

a first time stamp bearing packet received for each program carried in said first bit stream

123

10

15

WO 99/37048 PCT/US99/00360

a receipt time relative to said local clock, and assigns as a transmit time to a packet
containing data of said first time stamp bearing packet the sum of said assigned receipt time

and a known buffering delay.

60. The remuitiplexer of claim 57:
wherein said transmission of said packets at said times that depend on said
determined times by said processor prevents buffer overflow and underflow at a receiver

of said second bit stream.

61. The remultiplexer of claim 60 wherein said receiver buffer removes said identified
packets from said second bit stream according to time stamps corresponding to variably
compressed portions of said program, and a recovered system time clock for said program,
and wherein said variably compressed portions of said first video program bearing bit
stream have a number of bits which number depends on a presumed storage capacity of said

receiver buffer and a predetermined bit rate of said first video program.

62. The remultiplexer of claim 57:

wherein said processor determines a packet time slot of said second

bitstream nearest in time to said determined transmit time for a packet,

wherein if more than one packet is nearest in transmit time to a single one
of said packet time slots, said processor assigns, to sequential packet time slots, each of said

packets nearest in transmit time to said single packet time slots, and

124

10

15

WO 99/37048 PCT/US99/00360

wherein said processor adjusts a time stamp of each packet bearing a time
stamp and which is assigned to one of said packet time slots other than said single packet
time slot based on the number of packet time slots said assigned packet time slot is

displaced from said single packet time slot.

63. The remultiplexer of claim 62 further comprising:
a memory, wherein said asynchronous interface inserts each of said selected

received packets into a queue in said memory pending transmission,

wherein said processor estimates a drift between a local clock and each of
one or more system time clocks of encoders that produced said received packets as a
function of a difference between a current queue length delay of said queue and an ideal
queue length delay of said queue, and

wherein said processor further adjusts each of said adjusted time stamps
according to a corresponding one of said drifts between said local clock and said system

time clock of said encoder that prodﬁced said packet.

64. A bit stream produced by multiplexing a first video program bearing bit stream into
a second bit stream, said first video program bearing bit stream containing a set of plural
time stamps for each program contained therein indicating a time relative to a system time
clock of an encoder at which each packet of said program should appear in said first bit

stream, said process of remultiplexing comprising the steps of:

125

10

15

20

WO 99/37048 PCT/US99/00360

(a) receiving said first video program bearing bit stream from a communication
link having a varying end-to-end transmission delay,

(b) determining a time at which each of one or more of packets carrying data
of the same program received from said first video program bearing bit stream should
appear in said second bit stream based on a plurality of time stamps of said program
received from said first video program bearing bit stream, and

(c) selectively transmitting selected ones of said one or more packets in said
second bitstream with a constant end-to-end delay at times that depend on said determined
times.

65. A method for timely outputting compressed video program data bearing bit streams
comprising the steps of:

(a) providing a bit stream containing transport packets, said transport packets
containing compressed program data of one or more video programs, each of said programs
having a predetermined bit rate, said transport packets also containing program clock
reference time stamps for each of said programs, to which decoding and presentation of
each program is synchronized,

(b) assigning dispatch times to each of one or more selected ones of said

transport packets to maintain a predetermined bit rate of a program for which said transport

~ packet carries data and to incur an average latency for each of said transport packets, and

(c) at times that depend on each of said dispatch times, issuing one or more
commands to an asynchronous communication interface for causing said asynchronous

communication interface to transmit said corresponding selected transport packets at

126

10

15

20

WO 99/37048 PCT/US99/00360

approximately said dispatch times so as to minimize a jitter of said selected transport

packets.

66. The method of claim 65 further comprising the steps of:

(d) allocating a transmit descriptor to each of said transport packets, said
transmit descriptors residing in order of said dispatch time in a queue assigned to said
asynchronous interface,

(e) recording each of said dispatch times of said transport packets in a transmit
descriptor allocated to said respective transport packet,

(63) examining a dispatch time of each of said descriptors in order in said queue,

(g) comparing said examined dispatch time to a time generated by a local
reference clock, and

(h) issuing each command at a time determined by said comparison.

67. The method of clﬁm 66 further comprising the steps of:
6)) receiving at least some of said transport packets from another interface,
()] generating said dispatch times as a function of a time at which each of said
transport packets is received and a presumed buffering delay between said time of receipt

and said time at which said asynchronous interface generates said output.

68. The method of claim 66 further comprising the steps of:

(1) selecting a transmit PID handler subroutine for performing said steps (b),

(d) and (e), and,

127

10

15

20

WO 99/37048 PCT/US99/00360
)] each time one of said commands is issued, attempting to repeat steps (b), (d)

and (e).

69. The method of claim 65 further comprising the steps of:

(d) receiving said transport packets transmitted from said asynchronous
interface at another asynchronous interface of a receiving node,

(¢) dejittering said received transport packets at said receiving node, and

® remultiplexing at least some of said dejittered transport packets into a second
bit stream outputted from said receiving node so that said second bit stream has a

continuous end-to-end delay for each program carried therein.

70. A remultiplexer for timely outputting compressed video program data bearing bit
streams comprising:

a synchronous interface for providing a bit stream containing transport
packets, said transport packets containing compressed program data of one or more video
programs, each of said programs having a predetermined bit rate, said transport packets also
containing program clock reference time stamps for each of said programs, to which
decoding and presentation of each program is synchronized,

a processor for assigning dispatch times to each of one or more selected ones
of said transport packets to maintain a predetermined bit rate of a program for which said
transport packet carries data and to incur an average latency for each of said transport

packets, and

128

10

15

20

WO 99/37048 PCT/US99/00360

an asynchronous communication interface for, at times that depend on each
of said dispatch times, receiving one or more commands and responding thereto by
transmitting said corresponding selected transport packets at approximately said dispatch

times so as to minimize a jitter of said selected transport packets.

71. The remultiplexer of claim 70 further comprising:

a memory for storing a queue of descriptors assigned to said asynchronous
interface, said processor allocating a transmit descriptor to each of said transport packets,
said transmit descriptors residing in order of said dispatch time in said queue, said
processor also recording each of said dispatch times of said transport packets in a traﬁsmit
descriptor allocated to said respective transport packet, and

an output data link control circuit examining a dispatch time of each of said
descriptors in order in said queue, comparing said examined dispatch time to a time
generated by a local reference clock, and causing each command to issue at a time

determined by said comparison.

72. The remultiplexer of claim 71 wherein said synchronous interface receives at least

some of said transport packets outputted by said asynchronous interface, said processor

 generating said dispatch times as a function of a time at which each of said transport

packets is received at said synchronous interface and a presumed buffering delay between
said time of receipt and said time at which said asynchronous interface generates said

output.

129

10

15

20

WO 99/37048 PCT/US99/00360
73. The remultiplexer of claim 71 wherein said processor selects a transmit PID handler

subroutine for assigning dispatch times to said transport packets, for allocating descriptors
and for recording séid assigned dispatch times in said allocated descriptors, and wherein
each time one of said commands issues, said processor attempts to assign dispatch times
to a subsequent group of said transport packets, allocate descriptors to each transport packet
of said subsequent group and record said dispatch times assigned to said subsequent group

of said transport packets in said descriptors allocated thereto.

74. The remultiplexer of claim 70, wherein said remultiplexer comprises multiple
nodes, said remultiplexer further comprising:

a second asynchronous interface at a receiving node receiving said transport
packets transmitted from said asynchronous interface,

a second processor at said receiving node for dejittering said received
transport packets at said receiving node, and

an output synchronous interface at said receiving node for remultiplexing
at least some of said dejittered transport packets into a second bit stream outputted from
said receiving node so that said second bit stream has a continuous end-to-end delay for

each program carried therein.

75. A bit stream containing compressed video program data produced by the steps of:
(a) providing a bit stream containing transport packets, said transport packets
containing compressed program data of one or more video programs, each of said programs

having a predetermined bit rate, said transport packets also containing program clock

130

10

15

20

WO 99/37048 PCT/US99/00360

reference time stamps for each of said programs, to which decoding and presentation of
each program is synchronized,

(b) assigning dispatch times to each of one or more selected ones of said
transport packets to maintain a predetermined bit rate of a program for which.said transport
packet carries data and to incur an average latency for each of said transport packets, and

(c) at times that depend on each of said dispatch times, issuing one or more
commands to an asynchronous communication interface for causing said asynchronous
communication interface to transmit said corresponding selected transport packets at
approximately said dispatch times so as to minimize a jitter of said selected transport

packets.

76. The bit stream of claim 75 produced by the further steps of:

(d) receiving said transport packets transmitted from said asynchronous
interface at another asynchronous interface of a receiving node,

(e) dejittering said received transport packets at said receiving node, and

® remultiplexing at least some of said dejittered transport packets into a second
bit stream outputted from said receiving node so that said second bit stream has a

continuous end-to-end delay for each program carried therein.
77. A method for remultiplexing one or more bit streams containing compressed

program data in an asynchronous communications network comprising plural nodes

interconnected by one or more communication links comprising the steps of:

131

10

15

20

WO 99/37048 PCT/US99/00360

(a) receiving, from one of said communication links at a destination node of
said asynchronous communications network, a first bit stream containing data of one or
more programs, said first bit stream having one or more predetermined bit rates for portions
thereof,

(b) choosing at least part of said received first bit stream for transmission, and

© scheduling transmission of said chosen part of said first bitstream so as to
output said chosen part of said first bit stream in a transport stream at a rate depending on

said predetermined rate of said chosen part of said first bit stream.

78. At multiple nodes of 2 communication network, a method for remultiplé’)king one
or more portions of bit streams into one or more transport streams containing compressed
video program data comprising the steps of:

(@) enabling communication amongst a plurality of nodes connected to a shared
communication medium by one or more respective communication links,

(b) selecting a first set of one or more of said nodes for transmitting one or more
bit streams onto said shared communications medium,

(© selecting a second set of one or more of said nodes for receiving said
transmitted bit streams from said shared communications medium, for selecting portions
of said transmitted bit streams and for transmitting one or more remultiplexed transport
streams as a bit stream containing said selected portions, each of said remultiplexed
transport streams transmitted as a bit stream being different than said received ones of said

transmitted bit streams, and

132

10

15

20

WO 99/37048 PCT/US99/00360

(d) causing said selected nodes to communicate said bit streams via said shared
communication medium according one of plural different signal flow patterns, including
at least one signal flow pattern that is different from a topological connection of said nodes

to said shared communication medium.

79. The method of claim 78 wherein at least one node can receive bit streams from each
of plural other ones of said nodes via a single one of said respective communication links,
said method further comprising the step of selecting a subset of said plural other nodes and

receiving bit streams at said at least one node from only said selected subset of nodes.

80. The method of claim 78 wherein at least one node receives bit streams from plural

other ones of said nodes via a single one of said respective communication links.

81. A network distributed remultiplexer for remultiplexing one or more bit streams
containing compressed program data comprising:

one or more communication links, and

a plurality of nodes, interconnected by said one or more communication

links into a communications network, said plurality of nodes including a destination node

_receiving a first bit stream containing data of one or more programs via one of said

communications links, said first bit stream having one or more predetermined bit rates for
portions thereof, said destination node comprising:
a processor for choosing at least part of said received first bit stream

for transmission, and for scheduling transmission of said chosen part of said first

133

WO 99/37048 ' e PCT/US99/00360

bit stream so as to output said chosen part of said first bit stream in a transport
stream at a rate depending on said predetermined rate of said chosen part of said

first bit stream.

82. A network distributed remultiplexer for remultiplexing one or more portions of bit
5 streams into one or more transport streams containing compressed video program data
comprising:
a shared communication medium comprising one or more communication
links,
a plurality of nodes, each of said nodes being connected to said shared
10 communication medium by a respective one or more of said communication links, said
plurality of nodes including;:
a first set of one or more of said nodes for transmitting one or more
bit streams onto said shared communications medium,
a second set of one or more of said nodes for receiving said
15 transmitted bit streams from said shared communications medium, for selecting
portions of said transmitted bit streams and for transmitting one or more
remultiplexed transport streams as a bit stream containing said selected portions,
each of said remultiplexed transport streams transmitted as a bit stream being
different than said received ones of said transmitted bit streams, and
20 a controller node for selecting said first and second sets of nodes and
for causing said selected nodes to communicate said bit streams via said shared

communication medium according one of plural different signal flow pattemns,

134

10

15

20

WO 99/37048 PCT/US99/00360

including at least one signal flow pattern that is different from a topological

connection of said nodes to said shared communication medium.

83. The network distributed remultiplexer of claim 82 wherein said plurality of nodes
further comprises at least one node that can receive bit streams from each of plural other
ones of said nodes via a single one of said respective communication links, said controller
node selecting a subset of said plural other nodes and said at least one node receiving bit

streams from only said selected subset of nodes.

84. The network distributed remultiplexer of claim 82 wherein said plurality of nodes
comprises at least one node that receives bit streams from plural other ones of said nodes
via a single one of said respective communication links.

85. A method for locking reference clocks at circuits that transmit and receive a
transport stream formed from a sequence of transport packets containing compressed data
for one or more programs, each of said programs having an independent bit rate and
program clock reference time stamps of an independent encoder system time clock to which
decoding and presentation of said program is synchronized, said method comprising the
steps of:

(a) maintaining a reference clock at each first circuit which receives transport
packets and each second circuit which transmits transport packets, said reference clock at
each first circuit for indicating a time at which each transport packet is received thereat and
said reference clock at each second circuit for indicating when to transmit each transport

packet therefrom,

135

10

15

20

WO 99/37048 PCT/US99/00360

(b) designating a master reference clock to which each other one of said
reference clocks is to be synchronized,

(c) periodically obtaining a current time of said master reference clock, and

(d) adjusting each other one of said reference clocks according to a difference
between said time at each of said other reference clocks and said current time of said master
reference clock so as to match a time of said respective reference clock to a corresponding

time of said master reference clock.

86. The method of claim 85 wherein a reference clock at one of said first and second
circuits is designated as said master reference clock, said method further comprising the

steps of:

(e) simultaneously retrieving a current time of said reference clocks at each said
first and second circuits,

® forming a difference between said current times of said reference clocks at
said one circuit and each of said first and second circuits other than said one circuit, and

(g) adjusting said reference clock at each of said first and second circuits other

than said one circuit to reduce said difference.

87. The method of claim 85 wherein said first and second circuits are distributed at
multiple nodes, said method further comprising the steps of:
(e) receiving said current time of said master reference clock at a first one of

said nodes, and

136

10

15

20

WO 99/37048 PCT/US99/00360

® transmitting said received current time from said first node to a second one

of said nodes via a communication link.

88. The method of claim 85 wherein said master reference clock is geographically
remote from each of said first and second circuits, said method further comprising the step
of:

(e) periodically broadcasting said current time of said master reference clock,
and

® contemporaneously receiving said broadcasted current time at each of plural

remote first and second circuits.

89. A remultiplexing apparatus for remultiplexing a transport stream formed from a
sequence of transport packets containing compressed data for one or more programs, each
of said programs having an independent bit rate and program clock reference time stamps
of an independent encoder system time clock to which decoding and presentation of said
program is synchronized, said remultiplexer comprising:

one or more first circuits that receives transport packets, each first circuit
comprising a first reference clock for indicating a time at which each transport packet is
received,

one or more second circuit that transmits transport packets, each second
circuit comprising a second reference clock for indicating when to transmit each transport

packet,

137

10

15

20

WO 99/37048 PCT/US99/00360

a master reference clock to which each of said first and second reference
clocks is to be synchronized, for periodically obtaining a current time of said master
reference clock, and

a processor for adjusting each of said first and second reference clocks
according to a difference between said time at each of said first and second reference clocks
and said current time of said master reference clock so as to match a time of said respective

first and second reference clock to a corresponding time of said master reference clock.

90. The remultiplexer of claim 89 wherein a reference clock at one of said first and
second circuits is designated as said master reference clock, wherein said processor
simultaneously retrieves a current time of said first and second reference clocks at each of
said first and second circuits, forms a difference between said current times of said first and
second reference clocks at said one circuit and each of said first and second circuits other
than said one circuit, and adjusts each first and second reference clock at each of said first

and second circuits other than said one circuit to reduce said difference.

91. The remultiplexer of claim 89 wherein said first and second circuits are distributed
at multiple nodes, said remultiplexer further comprising:

a communication link connecting first and second ones of said nodes, said
first node receiving said current time of said master reference clock and transmitting said
received current time frpm said first node to a second one of said nodes via a

communication link.

138

10

15

20

WO 99/37048 PCT/US99/00360

92. Theremultiplexer of claim 89 wherein said master reference clock is geographically
remote from each of said first and second circuits, said remultiplexer further comprising:
one or more receivers for contemporaneously receiving a periodic broadcast

of said current time of said master reference clock.

93. A method for remultiplexing one or more transport streams formed from a sequence
of transport packets, including transport packets containing compressed program data for
each of one or more programs and, for each program, program clock reference time stamps,
to which decoding and presentation of said program is synchronized, said method
comprising the steps of:

(a) providing one or more transport streams,

(b) selecting one or more transport packets of said one or more transport streams
for output in a remultiplexed transport stream,

(©) scheduling some of said transport packets for output in a time slot of an
outputted transport stream depending on a predetermined delay, each of said time slots
occurring approximately at a dispatch time as indicated by a local clock,

(d) adjusting each program clock reference time stamp of each scheduled

program clock reference bearing transport packet based on a drift between said local clock

~ and a program system time clock from which said program clock reference time stamp was

generated, if any, and
(e) further adjusting each adjusted program clock reference time stamp based

on a difference between said dispatch time of said time slot in which said program clock '

139

10

15

20

WO 99/37048 PCT/US99/00360

reference time stamp bearing transport packet is scheduled to be outputted and an actual

time at which said time slot occurs relative to an external clock.

94. The method of claim 93 further comprising the steps of:

® scheduling other transport i)ackets for output in time slots of said outputted
transport stream other than a time slot that depends on said predetermined delay,

(g) calculating an estimated adjustment for each program clock reference time
stamp in a selected transport packet outputted in one of said other time slots based on a
difference in output time between said one other time slot and a time slot corresponding to
said predetermined delay, and

(h) adjusting each program clock reference time stamp, in a program clock
reference time stamp bearing transport packet scheduled for output in one of said other time

slots, by said estimated adjustment.

95. A remultiplexer for remultiplexing one or more transport streams formed from a
sequence of transport packets, including transport packets containing compressed program
data for each of one or more programs and, for each program, program clock reference time
stamps, to which decoding and presentation of said program is synchronized, said method
comprising:

a local clock,

a processor responsive to said local clock for selecting one or more transport
packets of one or more transport streams for output in a remultiplexed transport stream, for

scheduling some of said transport packets for output in a time slot of an outputted transport

140

10

15

20

WO 99/37048 PCT/US99/00360

stream depending on a predetermined delay, each of said time slots occurring
approximately at a dispatch time as indicated by said local clock, for adjusting each of
program clock reference time stamp in each scheduled program clock reference time stamp
bearing transport packet depending on a drift between said local clock and a program
system time clock from which said program clock reference time stamp was generated, if
any, and

an output data link control circuit responsive to transport packets scheduled
by said processor for further adjusting each adjusted program clock reference time stamp
based on a difference between said dispatch time of said time slot in which said program
clock reference time stamp bearing transport packet is scheduled to be outputted and an

actual time at which said time slot occurs relative to an external clock.

96. The remultiplexer of claim 95 wherein said proéessor is also for écheduling other
transport packets for output in time slots of said outputted transport stream other than a time
slot that depends on said predetermined delay, for calculating an estimated adjustment for
each program clock reference time stamp, in a program clock reference time stamp bearing
transport packet scheduled for output in one of said other time slots, based on a difference

in output time between said one other time slot and a time slot corresponding to said

_ predetérmined delay, and for adjusting each program clock reference time stamp by said

estimated adjustment.

97. A bit stream formed from a sequence of transport packets, including transport

packets containing compressed program data for each of one or more programs and, for

141

10

15

20

WO 99/37048 PCT/US99/00360

each program, program clock reference time stamps, to which decoding and presentation
of said program is synchronized, said bit stream being produced by the steps of:

(a) providing one or more transport streams,

(b) selecting one or more transport packets of said one or more transport streams
for output in a remultiplexed transport stream,

(c) scheduling some of said transport packets for output in a time slot of an
outputted transport stream depending on a predetermined delay, each of said time slots
occurring approximately at a dispatch time as indicated by a local clock,

(d) adjusting each program clock reference time stamp of each scheduled
program clock reference bearing transport packet based on a drift between said local clock
and a program system time clock from which said program clock reference time stamp was
generated, if any, and

(e) further adjusting each adjusted program clock reference time stamp based
on a difference between said dispatch time of said time-slot in which said program clock
reference time stamp bearing transport packet is scheduled to be outputted and an actual

time at which said time slot occurs relative to an external clock.

98. The bit stream of claim 97 formed by the further steps of:

® scheduling other transport packets for output in time slots of said outputted
transport stream other than a time slot that depends on said predetermined delay,

(g) calculating an estimated adjustment for each program clock reference time

stamp in a selected transport packet outputted in one of said other time slots based on a

142

10

15

20

WO 99/37048 PCT/US99/00360

difference in output time between said one other time slot and a time slot corresponding to
said predetermined delay, and

(h) adjusting each program clock reference time stamp, in a program clock
reference time stamp bearing transport packet scheduled for output in one of said other time

slots, by said estimated adjustment.

99. A method for remultiplexing transport packets, including transport packets
containing compressed program data, each program for which said transport packets
contain program data comprising a constant end-to-end communication delay requirement,
an independent bit rate and program clock reference time stamps of an independent encoder
system time clock to which decoding and presentation of said program is synchronized, said
method comprising:

(a) allocating to each received transport packet to be retained, an unused
descriptor in one of a sequence of descriptor storage locations of which a cache has
obtained control, said sequence of descriptor storage locations being part of a queue
allocated to a particular input port,

b) storing each retained transport packet at a transport packet storage location,
of which said cache has obtained control, and to which said allocated descriptor points, and

(c) obtaining control of one or more unused descriptor storage locations of said
queue following a last descriptor storage location of which said cache has already obtained
control, and transport packet locations to which such descriptors in said one or more
descriptor storage locations point, said queue of descriptor storage locations and transport

packet storage locations being maintained in a memory that is separated from said cache

143

10

15

20

WO 99/37048 PCT/US99/00360

by an asynchronous communication link having a varying end-to-end communication

delay.

100. The method of claim 99 further comprising:

(d) wﬁting data of said allocated descriptors to corresponding descriptor storage
locations of said memory, and writing transport packets to transport packet storage
locations pointed to by said allocated descriptors for which data is written to said memory,

via said communication link.

101. The method of claim 100 further comprising:

(e) periodically examining said descriptor data written to said descriptor storage
locations of each queue in said memory associated with an input port,

6)) processing said transport packets in transport packet locations pointed to by
said examined descriptors, and

() allocating for selected ones of said descriptors of one or more of said queues
associated with input ports, a descriptor of a queue associated with an output port,

(h) copying selected information from each selected descriptor of said one or

more queues associated with input ports to said descriptor of said queue associated with

~ said output port, and

(8) ordering said descriptors within said queue associated with said output port

in a particular order for transmission from said output port.

102. The method of claim 101 further comprising the steps of:

144

10

15

20

WO 99/37048 PCT/US99/00360

(1) retrieving each descriptor of said queue associated with said output port
from a second cache, each descriptor being retrieved from a beginning of a sequence of
descriptor storage locations in said second cache, and retrieving from said second cache
each transport packet stored in a transport packet storage location to which each retrieved
descriptor points,

0) outputting each retrieved transport packet in a unique time slot of a transport
stream outputted from said particular output port, and

k) obtaining from said memory for storage in said second cache, descriptors
of said queue associated with said output port in descriptor storage locations following said
descriptor storage locations in which a last cached descriptor of said sequence is stored, and
each transport packet stored in a transport packet location to which said obtained

descriptors point.

103. A method for remultiplexing transport packets, including transport packets
containing compressed program data, each program for which said transport packets
contain program data comprising a constant end-to-end communication delay requirement,
an independent bit rate and program clock reference time stamps of an independent encoder
system time clock to which decoding and presentation of said program is synchronized, said
method comprising:

(a) retrieving from a cache, each descriptor of 2 sequence of descriptor storage
locations of a queue assigned to an output port, each descriptor being retrieved from a
beginning of said sequence, and retrieving from said cache each transport packet stored in

a transport packet storage location to which each retrieved descriptor points,

145

10

15

20

WO 99/37048 PCT/US99/00360

(b) outputting each retrieved transport packet in a unique time slot of a transport
stream outputted from said particular output port, and

(c) obtaining from a memory for storage in said cache, via an asynchronous
communication link having a varying end-to-end communication delay, one or more
descriptors in descriptor storage locations of said queue following a descriptor storage
location in which a last cached descriptor of said sequence is stored, and each transport

packet stored in a transport packet location to which said obtained descriptors point.

104. The method of claim 103 further comprising:

(d) providing in said memory additional queues of descriptors storage locations
containing one or more descriptors pointing to one or more transport packet storage
locations, in which to-be-outputted transport packets are stored,

(¢) periodically examining descriptor data written to said descriptor storage
locations of each of said additional queues in said memory,

® processing said transport packets in transport packet locations pointed to by
said examined descriptors, and

(g) allocating to selected ones of said descriptors of one or more of said

additional queues, a descriptor of said queue assigned to said output port, copying selected

_information from each selected descriptor of said one or more additional queues to said

allocated descriptor of said queue assigned to said output port and ordering said allocated
descriptors of said queue assigned to said output port in a particular order for transmission

from said output port.

146

10

15

20

WO 99/37048 PCT/US99/00360
105. A remultiplexer for remultiplexing transport packets, including transport packets

containing compressed program data, each program for which said transport packets
contain program data comprising a constant end-to-end communication delay requirement,
an independent bit rate and program clock reference time stamps of an independent encoder
system time clock to which decoding and presentation of said program is synchronized, said
remultiplexer comprising:

a cache,

a data link control circuit connected to said cache for allocating to each
received transport packet to be retained, an unused descriptor in one of a sequence of
descriptor storage locations of which said cache has obtained control, said sequence of
descriptor storage locations being part of a queue allocated to a particular input port, and
for storing each retained transport packet at a transport packet storage location of which
said cache has obtained control and to which said allocated descriptor points, and

a direct memory access circuit connected to said cache for obtaining control
of one or more unused descriptor storage locations of said queue following a last descriptqr
storage location of which said cache has already obtained control, and transport packet
locations to which such descriptors in said one or more descriptor storage locations point,
said queue of descriptor storage locations, and transport packet storage locations being
maintained in a memory that is separated from said cache by an asynchronous

communication link having a varying end-to-end communication delay.

106. The remultiplexer of claim 105 wherein said direct memory access circuit writes

data of said allocated descriptors to corresponding descriptor storage locations of said

147

10

15

20

WO 99/37048 PCT/US99/00360

memory, and writes transport packets to transport packet storage locations pointed to by
said allocated descriptors for which data is written of said memory, via said asynchronous

communication link.

107. The remultiplexer of claim 106 further comprising:

a processor for periodically examining said descriptor data written to said
descriptor storage locations of each queue in said memory ass-ociated with an input port,
for processing said transport packets in transport packet locations pointed to by said
examined descriptors, for allocating for selected ones of said descriptors of one or more of
said queues associated with input ports, a descriptor of a queue associated with an output
port, for copying selected information from each selected descriptor of said one or more
queues associated with input ports to said descriptor within said queue associated with said
output port, and for ordering said descriptors within said queue associated with said output

port in a particular order for transmission from said output port.

108. The remultiplexer of claim 107 further comprising:

a second cache,

a second data link control circuit for retrieving from said second cache each
descriptor of said queue associated with said output port, each descriptor being retrieved
from a beginning of a sequence of descriptor storage locations in said second cache, for
retrieving from said second cache eacﬁ transport packet stored in a transport packet storage

location to which each retrieved descriptor points, and for outputting each retrieved

148

10

15

20

WO 99/37048 PCT/US99/00360

transport packet in a unique time slot of a transport stream outputted from said particular
output port, and

a second direct memory access circuit connected to said asynchronous
communication link for obtaining from said memory for storage in said second cache,
descriptors of said queue associated with said output port in descriptor storage locations
following said descriptor storage locations in which a last cached descriptor of said
sequence is stored, and each transport packet stored in a transport packet location to which

said obtained descriptors point.

109. A remultiplexer for remultiplexing transport packets, including transport packets
containing compressed program data, each program for which said transport packets
contain program data comprising a constant end-to-end communication delay requirement,
an independent bit rate and program clock reference time stamps of an independent encoder
system time clock to which decoding and presentation of said program is synchronized, said
remultiplexer comprising:

a cache,

a data link control circuit connected to said cache for retrieving from said
cache each descriptor of a sequence of descriptor storage locations of a queue assigned to
an output port, each descriptor being retrieved from a beginning of said sequence, for
retrieving from said cache each transport packet stored in a transport packet storage location
to which each retrieved descriptor points, and for outputting each retrieved transport packet

in a unique time slot of a transport stream outputted from said particular output port, and

149

10

15

20

WO 99/37048 PCT/US99/00360

a direct memory access circuit connected to said cache for obtaining from
said memory for storage in said cache, via an asynchronous communication link having a
varying end-to-end .communication delay, one or more descriptors in descriptor storage
locations of said queue following a descriptor storage location in which a last cached
descriptor of said sequence is stored, and each transport packet stored in a transport packet

location to which said obtained descriptors point.

110. The remultiplexer of claim 109 further comprising:

a memory <;onnected to said asynchronous communication link for
maintaining additional queues of descriptors storage locations containing one or more
descriptors pointing to one or more transport packet storage locations, in which to-be-
outputted transport packets are stored,

a processor connected to said asynchronous communication link for
periodically examining descriptor data written to said descriptor storage locations of each
of said additional queues in said memory, for processing said transport packets in transport
packet locations pointed to by said examined descriptors, and for allocating to selected ones
of said descriptors of one or more of said additional queues, a descriptor of said queue
assigned to said output port, copying selected information from each selected descriptor of
said one or more additional queues to said allocated descriptor of said queue assigned to
said output port and ordering said allocated descriptors of said queue assigned to said

output port in a particular order for transmission from said output port.

150

10

15

20

WO 99/37048 PCT/US99/060360
111. A transport stream containing transport packets, including transport packets

containing compressed program data, each program for which said transport packets
contain program data comprising a constant end-to-end communication delay requirement,
an independent bit rate and program clock reference time stamps of an independent encoder
system time clock to which decoding and presentation of said program is synchronized, said
transport stream being produced by the steps of:

(a) allocating to each received transport packet to be retained, an unused
descriptor in one of a sequence of descriptor storage locations of which a cache has
obtained control, said sequence of descriptor storage locations being part of a queue
allocated to a particular input port,

(b) storing each retained transport packet at a transport packet storage location
of which said cache has obtained control pointed to by said descriptor allocated thereto, and

(©) obtaining control of one or more unused descriptor storage locations of said
queue following a last descriptor storage location of which said cache has already obtained
control, and transport packet locations to which such descriptors in said one or more
descriptor storage locations point, said queue of dcscript.c>r storage locations and transport
packet storage locations being maintained in a memory that is separated from said cache

by an asynchronous communication link having a varying end-to-end communication

~delay.

112. A transport stream containing transport packets, including transport packets
containing compressed program data, each program for which said transport packets

contain program data comprising a constant end-to-end communication delay requirement,

151

10

15

20

WO 99/37048 PCT/US99/00360

an independent bit rate and program clock reference time stamps of an independent encoder
system time clock to which decoding and presentation of said program is synchronized, said
transport stream being produced by the steps of:

(a) retrieving from a cache each descriptor of a sequence of descriptor storage
locations of a queue assigned to an output port, each descriptor being retrieved from a
beginning of said sequence, and retrieving from said cache each transport packet stored in
a transport packet storage location to which each retrieved descriptor points,

(b) outputting each retrieved transport packet in a unique time slot of a transport
stream outputted from said particular output port, and

(© obtaining from a memory for storage in said cache, via an asynchronous
communication link having a varying end-to-end communication delay, one or more
descriptors in descriptor storage locations of said queue following a descriptor storage
location in which a last cached descriptor of said sequence is stored, and each transport

packet stored in a transport packet location to which said obtained descriptors point.

113. A method for descrambling transport packets of a transport stream, said transport
packets containing elementary stream data of one or more video programs, said method
comprising the steps of:
(a) defining a sequence of one or more processing steps to be performed on each
transport packet and ordering the step of descrambling processing within said sequence,
(b) allocating to each transport packet a descriptor of a queue, each allocated
descriptor containing a pointer to said transport packet to which it is allocated, one or more

processing indications and a storage location for control word information,

152

10

15

20

WO 99/37048 PCT/US99/00360

(© storing control word information associated with contents of said transport
packet in said control word information storage location of selected ones of said allocated
descriptors,

(d) setting said one or more of said processing indications to indicate that the
next step of processing of said sequence may be performed on each of said allocated
descriptors,

(e sequentially accessing each allocated descriptor, and

® for each accessed descriptor pointing to a to-be-descrambled transport
packet, descrambling said transport packet pointed to by said accessed descriptor using said
control word information in said accessed descriptor, only if said one or more processing
indications of said accessed descriptor are set to indicate that descrambling processing may
be performed on said accessed descriptor and transport packet to which said accessed

descriptor points.

114. The method of claim 113 wherein said control word information is a base address

of a control word table.

115. The method of claim 114 further comprising the steps of:

(g) during said step of descrambling, locating a control word table using said
base address and retrieving a control word from an entry of said control word table indexed
by a packet identifier of said transport packet, each packet identifier uniquely indicating the

elementary stream data contained in said transport packet.

153

10

15

WO 99/37048 PCT/US99/00360

116. The method of claim 115 wherein said step of locating further comprises using an

odd/even control word indication of said transport packet for retrieving said control word.

117. The method of claim 115 further comprising the steps of:
(g) maintaining a control word table containing said control words for

descrambling contents of said transport packets.

118. The method of claim 113 further comprising the steps of:

(8) writing descrambled transport packet data into a transport packet storage
location pointed to by said pointer of said allocated descriptor, thereby overwriting
pre-descrambling data of said transport packet, and

(h) after examining each descriptor containing processing indications that
indicate that descrambling processing may be performed, setting one or more of said
processing indications to indicate that the next step of processing of said sequence may be

performed on said descriptor, and transport packet to which said descriptor points.

119. A method for scrambling transport packets of a transport stream, said transport

packets containing elementary stream data of one or more video programs, said method

~ comprising the steps of:

(a) defining a sequence of one or more steps to be performed on each transport

packet and ordering scrambling processing within said sequence,

154

10

15

20

WO 99/37048 PCT/US99/00360

(b) allocating to each transport packet a descriptor of a queue, each allocated
descriptor containing a pointer to said transport pécket to which it is allocated, one or more
processing indications and a storage location for control word information,

(c) storing control word information associated with contents of said transport
packet in said control word information storage location of selected ones of said allocated
descriptors,

(d setting said one or more of said processing indications to indicate that the
next step of processing of said sequeﬁce may be performed on each of said allocated
descriptors,

(e) sequentially accessing each allocated descriptor, and

® for each accessed descriptor pointing to a to-be-scrambled transport packet,
scrambling said transport.packet pointed to by said accessed descriptor using said control
word information in said accessed descriptor, only if said one or more processing
indications of said éccessed descriptor are set to indicate that scrambling processing may
be performed on said accessed descriptor and transport packet to which said accessed

descriptor points.

120. The method of claim 119 wherein said control word information is a control word

corresponding to contents of each transport packet.

121. The method of claim 120 further comprising the steps of:
(g) during said step of allocating, retrieving said control word from an entry of

a control word table indexed by a packet identifier of said transport packet, each packet

155

10

15

WO 99/37048 PCT/US99/00360
identifier uniquely indicating the elementary stream data contained in said transport packet,

and
(h) storing said retrieved control word in said control word storage location of

said descriptor.

122. The method of claim 121 further comprising the steps of:
(i) maintaining a control word table containing said control words for

scrambling contents of said transport packets.

123. The method of claim 119 further comprising the steps of:

(g) writing scrambled transport packet data into a transport packet storage
location pqinted to by said pointer of said allocated descriptor, thereby overwriting pre-
scrambled data of said transport packet, and

(h) after examining each descriptor containing one or more processing
indications that indicate that scrambling processing may be performed, setting one or more
of said processing indications to indicate that the next step of processing of said sequence

may be performed on said descriptor, and transport packet to which said descriptor points.

124, A remultiplexer for descrambling transport packets of a transport stream, said

transport packets containing elementary stream data of one or more video programs, said

remultiplexer comprising:

156

10

15

20

WO 99/37048 PCT/US99/00360

a processor for defining a sequence of one or more processing steps to be
performed on each transport packet and for ordering descrambling processing within said
sequence,

a data link control circuit for allocating to each transport packet a descriptor
of a queue, each allocated descriptor containing a pointer to said transport packet to which
it is allocated, one or more processing indications and a storage location for control word
information, and for setting said one or more of said processing indications to indicate that
the next step of processing of said sequence may be performed on each of said allocated
descriptors, and

a descrambler for sequentially accessing each allocated descriptor, and, for
each accessed descriptor pointing to a to-be-descrambled transport packet, descrambling
said transport packet pointed to by said accessed descriptor using control word information
in said accessed descriptor, only if said one or more processing indications of said accessed
descriptor are set to indicate that descrambling processing may be performed on said
accessed descriptor and transport packet to which said accessed descriptor points,

wherein said processor also stores control word information associated with
the contents of received transport packets in said control word storage locations of

corresponding ones of said descriptors.

125. The remultiplexer of claim 124 wherein said control word information is a base

address of a control word table.

157

10

15

WO 99/37048 PCT/US99/00360

126. The remultiplexer of claim 125 wherein said descrambler locates a control word
table using said base address and retrieves a control word from an entry of said control
word table indexed by a packet identifier of said transport packet, each packet identifier

uniquely indicating the elementary stream data contained in said transport packet.

127. The remultiplexer of claim 126 wherein said descrambler locates said control word

using an odd/even indicator of said transport packet to index said control word table.

128. The remultiplexer of claim 126 wherein said processor maintains a control word

table containing said control words for descrambling contents of said transport packets.

129. The remultiplexer of claim 124 wherein said descrambler writes descrambled
transport packet data into a transport packet storage location pointed to by said pointer of
said allocated descriptor, thereby overwriting pre-descrambling data of said transport
packet, and, after examining each descriptor containing processing indications that indicate
that descrambling processing may be performed, sets one or more of said processing
indications to indicate that the next step of processing of said sequence may be performed

on said descriptor and transport packet to which said descriptor points.

130. A remultiplexer for scrambling transport packets of a transport stream, said
transport packets containing elementary stream data of one or more video programs, said

remultiplexer compnsing:

158

10

15

20

WO 99/37048 PCT/US99/00360

a processor for defining a sequence of one or more processing steps to be
performed on each transport packet, for ordering scrambling processing within said
sequence, for allocating to each transport packet a descriptor of a queue, each allocated
descriptor containing a pointer to said transport packet to which it is allocated, one or more
processing indications and a storage location for control word information, storing control
word information associated with contents of said transport packet in said control word
information storage location of selected ones of said allocated descriptors, and for setting
one or more of said processing indications to indicate that the next step of processing of
said sequence may be performed on each of said allocated descriptors, and

a scrambler for sequentially accessing each allocated descriptor, and, for
each accessed descriptor pointing to a to-be-scrambled transport packet, scrambling said
transport packet pointed to by said accessed descriptor using said control word information
in said accessed descriptor, only if said one or more processing indications of said accessed
descriptor are set to indicate that scrambling processing may be performed on said accessed

descriptor and transport packet to which said accessed descriptor points.

131. The remultiplexer-of claim 130 wherein said control word information is a control

word corresponding to contents of each transport packet.
132. The remultiplexer of claim 131 wherein said processor retrieves said control word

from an entry of a control word table indexed by a packet identifier of said transport packet,

each packet identifier uniquely indicating the elementary stream data contained in said

159

10

15

WO 99/37048 PCT/US99/00360

transport packet, and stores said retrieved control word in said control word storage location

of said descriptor.

133. The remultiplexer of claim 132 wherein said processor maintains a control word

table containing said control words for scrambling contents of said transport packets.

134. The remultiplexer of claim 130 wherein said scrambler writes scrambled transport
packet data into a transport packet storage location pointed to by said pointer of said
allocated descriptor, thereby overwriting pre-scrambled data of said transport packet, and,
after examining each descriptor, containing one or more processing indications that indicate
that scrambling processing may be performed, sets one or more of said processing
indications to indicate that the nest step of processing of said sequence may be performed

on said descriptor and transport packet to which said descriptor points.

135. A transport stream containing descrambled transport packets, said transport packets
containing elementary stream data of one or more video programs, said transport stream
being produced by the steps of:

(€)) defining a sequence of one or more processing steps to be performed on each
transport packet and ordering descrambling processing within said sequence,

(b) allocating to each transport packet a descriptor of a queue, each allocated
descriptor containing a pointer to said transport packet to which it is allocated, one or more

processing indications and a storage location for control word information,

160

10

15

20

WO 99/37048 PCT/US99/00360

(c) storing control word information associated with contents of said transport
packet in said control word information storage location of selected ones of said allocated
descriptors,

(d) setting one or more of said processing indications to indicate that the next
step of processing of said sequence may be performed on each of said allocated descriptors,

(e) sequentially accessing each allocated descriptor, and

® for each accessed descriptor pointing to a to-be-descrambled transport
packet, descrambling said transport packet pointed to by said accessed descriptor using said
control word information in said accessed descriptor, only if said one or more processing
indications of said accessed descriptor are set to indicate that descrambling processing may
be performed on said accessed descriptor and transport packet to which said accessed

descriptor points.

136. A transport stream containing scrambled transport packets, said transport packets
containing elementary stream data of one or more video programs, said transport stream
being produced by the steps of:

(a) defining a sequence of one or more processing steps to be performed on each
transport packet and ordering scrambling processing within said sequence,

(b) allocating to each transport packet a descriptor of a queue, each allocated
descriptor containing a pointer to said transport packet to which it is allocated, one or more

processing indications and a storage location for control word information,

161

10

WO 99/37048 PCT/US99/00360

(c) storing control word information associated with contents of said transport
packet in said control word information storage location of selected ones of said allocated
descriptors,

(d) setting one or more of said processing indications to indicate that the next
step of processing of said sequence may be performed on each of said allocated descriptors,

(e) sequentially accessing each allocated descriptor, and

® for each accessed descriptor pointing to a to-be-scrambled transport packet,
scrambling said transport packet pointed to by said accessed descriptor using said control
word information in said accessed descriptor, only if said one or more processing
indications of said accessed descriptor are set to indicate that scrambling processing may
be performed on said accessed descriptor and transport packet to which said accessed

descriptor points.

162

WO 99737048

30°

\

PCT/US99/00360

1/3
FIG. 1
21\ r 23
PROCESSOR MEMORY
< 1 L |
)
I L ! - 20
DISPLAY § oY
KEYBOARD 1/0 D}EVICE
Sy)
2 — (1 OR MORE NETWORKED 4
154 “BLACK BOXES") T8¢
50 0

200

REMUX

L1

T4 TIS T16 117

DATA
INJECTION EXTRACTION
FIG. 4
Tio 11 Tf Tja T;O
l : | BURSTY
ey P00 MK 100 DEVICE
118 * ?
18] | |11 (¢
)Y
'us
100"

PCT/US99/00360

WO 99/37048

213

B \}
o162 L a0 1S3 80 A a0 LY N qry 10 WS e
c-gor-1 D ONIIGWVEOSI0/NI 18HVEDS N 3300 40 11
Vil ~y N .
gg—] N0 XL | WS | SwLdInd -8B N—-- —rpersrsssiid : N
. < Va5 77177711777 . el
cpar] dWIS WL HOIVGSIO/NINH 1620 LI 1IN
R E-42l
veor] Hld “01 10094 [0S /
/" 30 0 0 Sy
c-gr-] N0 b3 | 1vIS A | S3neruLly |/ I o T 104 L0k
.. N0 d01 (| HOIdTHISH0 AHOH3M
2621 Uigar T A
< >
Log
RN SO irtrnnyis I 11 (1INHIH1D) T04INOD WHO . i
fxn ot +HOLAAND0 | "
H0SS3304d m.M@ m.m.w.m m EoEEuzu. JVIHIINI JWHANT 1] L Y -
o1 o8- [f, SNONOBHINAS | - { SAONOEHINASY .\%ﬂ_ﬁwﬁ ”
: 051/ __ ot “
b o
W)
"y tortios | L o
4! T /m:
\ il
06INOD NI VIVO
2 ‘9Id AP B EIL h
|

‘

WO 99/37048 PCT/US99/00360

33

FIG. 3

FROM DMA CTAL 116 FROM DATA LINK CTRL 112

|

52 4
SELECT RECEIPT PID lSELECT TRANSMIT PID ’
HANDLER SUBROUTINE | HANDLER SUBROUTINE
(AT PROCESSOR 160 L(AT PROCESSOR 160}

W0 404
| e | rover [P | POINER |
—e 0x0000 | RIVO el 0x0000 | TIVO

00001 | RIVL 00001 | TIVI

OcIFFF | RIVBISY OxIFFF | TIVB191

RIVO RIVB131 TIV0 11v8131
AIv1. '
Y
RCV. RCV. ACY. X X X
SUB.0 SUB.1 SUB.8131 SUB.0 SuB.1 SUB.B191

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/00360

A. CLASSIFICATION OF SUBJECT MATTER

1PC(6)
US CL :Please Scc Extra Sheet.

:HO4J 3724, HO4L 9/18, 12/56; HO4K 1/00; HO4N 7/10, 7/12, 7/52

According to Intcational Patent Classification (IPC) or to both nationsl classification and 1PC

B. FIELDS SEARCHED

Minimum documentation searched (classification sysiem followed by classification symbols)

U.S. : Please Seo Extra Sheet

Documentation searched other than minimum documentation to the extent that such documents are included in the ficlds searched

NONE

Electronic data base consulted during the intemational scarch (oame of data base and, where practicable, scarch terms used)

Please Sce Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*® Citation of document, with indication, where appropriate, of the relcvant passages Relevant to claim No.
X US 5,535,209 A (GLASER et al) 09 July 1996, see col. 3, line 45| 1-16, 77, 81, 85-
to col. 4, line 3, col. 5, lines 12-28, col. 6, lines 4-35, col. 7, line| 92
9 to col. 8, line 63.
X US 5,561,791 A (MENDELSON et al) 01 October 1996, see col. 3, 1-16, 77, 81, 85-
line 45 to col. 4, line 13, col. 5, lines 22-38, col. 6, lines 14-45,| 92
col. 7, line 19 to col. 10, line 19.
X US 5,640,388 A (WOODHEAD et al) 17 June 1997, see abstract, 47-64
col. 6, line 49 to col. 8, line 14, col. 9, line 47 to col. 11, line 28.
A US 5,517,250 A (HOOGENBOOM et al) 14 May 1996, see entire| 1-112
document.

m - Further documents are listed in the continuation of Box C.

D Sce patent family annex.

* Specisl gorias of cited & ts

°A* d ont defining the g } state of the ast which is pot considered
to be of particulsr rolevancs

B ewslier document publishod on or after the intsrnstional filing date

L doo\nm'hidan-ymdoubocnpriotﬁyuhb(l)avhﬂh
citad to blish the publication dste of her citation or other
special resson (es spocifiod)

0" document referring 1o an orsl disclosurs, use, exhibition or other
mexns

b o docmnlpubﬁsbodpriovblhoinumﬁomlminadabbmhwm

the priority date clsimod

o Ister & + publishod after the i 1 Giling dato or prioti
date and not in conflict with the application but cited to understand
the principlo or theory underlying the invention

X document of particular rolcvance: the claimed invention cannct be
considered novel or cannot be considered to involve an inveative step
when the document is taken slone

Yy document of panticulsr relovance; the claimed invention cannot be
comsidered 0 involve en inventive stop when the document is
combined with ono or more other such d: such binati
being obvious to s person skilled in the art

A docum ent member of the same patent family

Date of the actual completion of the intemational scarch

27 APRIL 1999

Date of mailing of the intemational search report

29 MAY 1999

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer
ALPUS H. HSU

fmw@- ﬁ- F@

Telephone No. (703) 3054377

Form PCT/ISA/210 (second sheet)(July 1992)»

INTERNATIONAL SEARCH REPORT Intemational application No.

PCT/US99/00360

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category® Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 5,652,627 A (ALLEN) 29 July 1997, see entire document. 1-112

A US 5,420,866 A (WASILEWSKI) 30 May 1995, see entire 113-136
document.

AP US 5,790,543 A (CLOUTIER) 04 August 1998, see entire 1-112
document.

AP US 5,754,783 A (MENDELSON et al) 19 May 1998, see entire 1-84, 93-112
document.

AP US 5,801,781 A (HIROSHIMA et al) 01 September 1998, see 1-84, 93-112

entire document.

Form PCT/ASA/210 (continuation of second sheet)(July 1992)«

INTERNATIONAL SEARCH REPORT Intemational application No.
PCTAUS99/00360

Box 1 Observations where certain claims were found unsearchable (Continustion of item 1 of first sheet)

This intemational report has not been established in respect of certain claims under Articte 17(2)(a) for the following reasons:

. [

Claims Nos.:
because they relate to subject matier not required to be searched by this Authority, namely:

Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful intemational scarch can be carricd out, specifically:

Claims Nos.:
because they are dependent claims and are not drafiod in accordance with the sccond and third sentences of Rule 6.4(a).

Box Il Observations where unity of invention is iacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this intemational application, as follows:

Plcase Sce Extra Sheet.

1.
2. []
3.D

4.[]

As all required additional scarch fees were timely paid by the applicant, this international search report covers all scarchable
claims.

As all scarchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
of any additional fee.

As only some of the required additional scarch fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

No required additional search fees were timely paid by the applicant. Consequently, this intemational scarch report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest D The additional search fees were accompanicd by the applicant's protest.

@ No protest accompanied the payment of additional search fees.

Form PCT/1SA/210 (continuation of first sheet(1))July 1992)=

INTERNATIONAL SEARCH REPORT Intematicnal application No.
PCTNS99/00360

A. CLASSIFICATION OF SUBJECT MATTER:
UsSCL :

3707389, 468, 471, 474, 477, 516; 3487387, 467, 512; 3757373, 380/10
B. FIELDS SEARCHED
Minimum documentation searched

Classification System: U.S.

370/229-231, 235. 389, 394, 395, 468, 470, 471, 474, 477, 503, 516, 545, 914; 34877, 12, 13, 384, 385, 387, 423, 461,
464, 467, 469, 497, 500, 512, 518, 536, 537, 375/373; 380/10, 15, 20

B. FIELDS SEARCHED
Electronic data b consulted (Name of data base and where practicable terms used):

APS scarch terms: transport, (packet¥ or celld), video, program, stream, time stamp#, bit rate, {null or idle or
dummyXw)Xpacket or cell), schedul?, compress?, encod?, decod?, synchroni?, (multiplex? or remultiplex?), descriptor,
dispatch?, (queuc or buffer), pointer, delsy, reference clock#, (phase or clock)p)lock?, broadcast?, scrambl?, descrambi?

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING
This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which arc not so linked as to form a single
inventive concept under PCT Rule 13.1. In order for all inventions 1o be searched, the sppropriate additional search fees
must be paid.

Group 1, claim(s) 1-16, drawn to & method and apparatus for optimizing bandwidth of transport stream.

Group 11, claim(s) 17-46, 77-84, 93-112, drawn to & method and apparatus for remultiplexing transport packets/program
bearing transport strecams.

Group I, claim(s) 47-64, drawn to a method and apparatus for multiplexing a first video program bearing bit stream
into a second bit stream.

Group IV, claim(s) 65-76, drawn to a method and apparatus for timely otputting compressed video program data besring
bit streams.

Group V, claim(s) 85-92, drawn to 8 method and apparatus for locking reference clocks with master reference clock.
Group VI, claim(s) 113-136, drawn to & method and apparatus for scrambling/descrambling transport packets.

The inventions listed as Groups 1-VI do not relate to a single inventive concept under PCT Rule 13.1 because, under
PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Inventions 1-V1
are related as subcombinations disclosed as usable together in & single combination. The subcombinations arc distinct
from each other if they arc shown to be separatcly usuable. In the instant case, Invention I has scpamte utility such as
bandwidth allocating device, lnvention 11 has separste utility such as multiplexing device, lavention 111 has separate
utility such as data formst converting device. Invention IV has separate utility such as video program outputting device,
Invention V bas scparate utility such as phase locking device, and Invention VI has separate utility such as data
scrambling/descrambling device.

Form PCT/ISA/210 (extra shect)(July 1992)%

This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original
documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

U BLACK BORDERS

L) IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

@/FADED TEXT OR DRAWING

(] BLURRED OR ILLEGIBLE TEXT OR DRAWING

U SKEWED/SLANTED IMAGES

0 COLOR OR BLACK AND WHITE PHOTOGRAPHS

U GRAY SCALE DOCUMENTS

(] LINES OR MARKS ON ORIGINAL DOCUMENT

(] REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

(] OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the image

problems checked, please do not report these problems to
the IFW Image Problem Mailbox.

-

	2002-06-25 Foreign Reference

